Birleşik Bayes model seçimi ve gürültülü sinüzoidallerin kestirimi
Joint Bayesian model selection and estimation of noisy sinusoidals
- Tez No: 256739
- Danışmanlar: YRD. DOÇ. DR. DURSUN ÜSTÜNDAĞ
- Tez Türü: Doktora
- Konular: Elektrik ve Elektronik Mühendisliği, Matematik, İstatistik, Electrical and Electronics Engineering, Mathematics, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2009
- Dil: Türkçe
- Üniversite: Marmara Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Matematik Ana Bilim Dalı
- Bilim Dalı: Uygulamalı Matematik Bilim Dalı
- Sayfa Sayısı: 240
Özet
Bu tezde gürültülü verilerden sinüzoidal sinyallerin sayısını tespit etme ve parametrelerini kestirme problemi, Bayes mantıksal çıkarımı çerçevesinde ele alındı. Bu amaçla, sinüzoidallerin sayısının ve her bir sinüzoidali karakterize eden parametrelerin (açısal frekans ve genlik) sonsal olasılık yoğunluk fonksiyonunun türetilmesinde Bayes olasılık teorisi kullanıldı. Bu, sinyal parametreleri hakkında mantıksal çıkarımlar yapmada daha sağlam bir matematiksel altyapıyı ve sinyal parametrelerin kestirim değerlerindeki belirsizliklerin hesaplanmasını sağladı. Ne yazık ki Bayes yaklaşımının temel problemi, analitiksel çözümü olmayan kapalı formda çok katlı integrallerin değerlendirilmesini gerektirmesidir. Fakat bu integrallerin analitiksel olarak hesaplanması çok zordur. Bu nedenle, sinüzoidallerin sayısının bilindiği ve bilinmediği iki farklı durumda istatiksel sinyal işleme literatüründe önerilen Bretthorst' un integral yöntemi, Gibbs örneklemesi, paralel tavlama ve tersinir atlamalı Markov halkalı Monte Carlo yöntemleri araştırılarak algoritmaları geliştirildi. Bu algoritmalar, Mathematica programlama diliyle kodlanarak gürültülü sinüzoidal sinyal modelleri için test edildi. Buna ek olarak, farklı sinyal gürültü oranı ve örneklem sayının değişimi altında tek frekanslı sinüzoitten üretilen gürültülü veriler üzerine belli sayıda simülasyon çalışması yapıldı. Bu simulasyon sonuçları kullanılarak, herhangi bir yansız kestiricinin varyansının alt sınırı olarak bilinen Cramer-Rao sınırına göre yöntemlerin performansları karşılaştırıldı.
Özet (Çeviri)
In this thesis, a detection of number of sinusoids and an estimation of their unknown parameters (angular frequency and amplitude) from noisy data was considered within a Bayesian logical inference framework. For this purpose, Bayesian probability theory was used to derive the posterior probability density function for the number of sinusoids and the parameters that characterize each sinusoid. This provides a rigorous mathematical foundation for making inferences about the signal parameters and a basis for quantifying the uncertainties in the estimated signal parameters. Unfortunately, the main problem of the Bayesian approach is that it typically requires the evaluation of high-dimensional integrals that do not admit any closed form analytical expression. But the evaluation of these integrals is more difficult. Therefore, by investigating some methods, such as Bretthorst?s integral method, Gibbs sampling, parallel tempering and reversible jump Markov Chain Monte Carlo methods which are proposed in the statistical signal processing literature, their algorithms were improved for two cases when the number of sinusoids is known or not. These algorithms were coded in Mathematica programming language and tested for noisy sinusoidal signal models. In addition, a number of simulation studies on synthetic data sets for a single sinusoid were made under the variety of different signal noise ratio and the length of data samples. By using these simulation results, the performances of the methods were compared with respect to the Cramér-Rao bound, which is known as a lower bound on the error variance of any unbiased estimator.
Benzer Tezler
- Fake news classification using machine learning and deep learning approaches
Makine öğrenimi ve derin öğrenme yaklaşımlarını kullanarak sahte haber sınıflandırması
SAJA ABDULHALEEM MAHMOOD AL-OBAIDI
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ TUBA ÇAĞLIKANTAR
- Bayesian model pooling for the analysis of generalized linear models with missing-not-at-random covariates
Rastgele olmayan kayıp verili değişkenler içeren genelleştirilmiş doğrusal modellerin analizi için Bayesiyen model havuzu
SEZGİN ÇİFTÇİ
Doktora
İngilizce
2020
İstatistikOrta Doğu Teknik Üniversitesiİstatistik Ana Bilim Dalı
DOÇ. DR. ZEYNEP IŞIL KALAYLIOĞLU AKYILDIZ
- Havayolu yolculuk deneyimini iyileştirmek için makine öğrenmesi yöntemleriyle uçuş gecikmesi tahmini
Machine learning techniques for enhancing airline passenger experience through flight delay prediction
ESMA ERGÜN
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilişim Uygulamaları Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SÜHA TUNA
- Covid-19 ilişkili insani gelişim seviyesinin sınıflandırılması için yeni bir derin evrişimsel sinir ağı modeli
A new deep concolutional neural network model for classification of Covid-19 related human development level
ŞEYMA GÖKHAN
Yüksek Lisans
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİnönü ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. CELALEDDİN YEROĞLU
DR. ÖĞR. ÜYESİ GÜRKAN KAVURAN
- Multiple criteria approaches for medical decision support models
Medikal karar destek modelleri için çok kriterli yaklaşımlar
MELODİ CEBESOY
Yüksek Lisans
İngilizce
2020
Endüstri ve Endüstri MühendisliğiHacettepe ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ CEREN TUNCER ŞAKAR
DR. ÖĞR. ÜYESİ BARBAROS YET