Geri Dön

Parameter estimation in generalized partial linear models with conic quadratic programming

Genelleştirilmiş parçalı doğrusal modellerde ikinci dereceden konik karesel programlama yöntemi ile parametre tahmini

  1. Tez No: 275853
  2. Yazar: GÜL ÇELİK
  3. Danışmanlar: PROF. DR. BÜLENT KARASÖZEN, PROF. DR. GERHARD WİLHELM WEBER
  4. Tez Türü: Yüksek Lisans
  5. Konular: Matematik, İstatistik, Mathematics, Statistics
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2010
  8. Dil: İngilizce
  9. Üniversite: Orta Doğu Teknik Üniversitesi
  10. Enstitü: Uygulamalı Matematik Enstitüsü
  11. Ana Bilim Dalı: Bilimsel Hesaplama Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 117

Özet

Özet yok.

Özet (Çeviri)

In statistics, regression analysis is a technique, used to understand and model therelationship between a dependent variable and one or more independent variables.Multiple Adaptive Regression Spline (MARS) is a form of regression analysis. It is anon-parametric regression technique and can be seen as an extension of linear modelsthat automatically models non-linearities and interactions. MARS is very importantin both classification and regression, with an increasing number of applications inmany areas of science, economy and technology.In our study, we analyzed Generalized Partial Linear Models (GPLMs), which areparticular semiparametric models. GPLMs separate input variables into two partsand additively integrates classical linear models with nonlinear model part. In orderto smooth this nonparametric part, we use Conic Multiple Adaptive Regression Spline(CMARS), which is a modified form of MARS. MARS is very benefical for highdimensional problems and does not require any particular class of relationship betweenthe regressor variables and outcome variable of interest. This technique offers a great advantage for fitting nonlinear multivariate functions. Also, the contribution of thebasis functions can be estimated by MARS, so that both the additive and interactioneffects of the regressors are allowed to determine the dependent variable. There aretwo steps in the MARS algorithm: the forward and backward stepwise algorithms. Inthe first step, the model is constructed by adding basis functions until a maximumlevel of complexity is reached. Conversely, in the second step, the backward stepwisealgorithm reduces the complexity by throwing the least significant basis functions fromthe model.In this thesis, we suggest not using backward stepwise algorithm, instead, we employa Penalized Residual Sum of Squares (PRSS). We construct PRSS for MARS as aTikhonov Regularization Problem. We treat this problem using continuous optimizationtechniques which we consider to become an important complementary technologyand alternative to the concept of the backward stepwise algorithm. Especially, we applythe elegant framework of Conic Quadratic Programming (CQP) an area of convexoptimization that is very well-structured, hereby, resembling linear programming and,therefore, permitting the use of interior point methods.At the end of this study, we compare CQP with Tikhonov Regularization problemfor two different data sets, which are with and without interaction effects. Moreover,by using two another data sets, we make a comparison between CMARS and twoother classification methods which are Infinite Kernel Learning (IKL) and TikhonovRegularization whose results are obtained from the thesis, which is on progress.

Benzer Tezler

  1. Advances in robust identification of spline models and networks by robust conic optimization, with applications to different sectors

    Değişik sektörlere uygulamalarıyla birlikte sağlam konik optimizasyon ile eğri modelleri ve ağların sağlam tanımlanmasındaki gelişimler

    AYŞE ÖZMEN

    Doktora

    İngilizce

    İngilizce

    2015

    MatematikOrta Doğu Teknik Üniversitesi

    Bilimsel Hesaplama Ana Bilim Dalı

    PROF. DR. GERHARD WİEHELM WEBER

  2. Refinements, extensions and modern applications of conic multivariate adaptive regression splines

    Konik çok değişkenli uyarlanabilir regresyon eğrilerinin geliştirilmesi, uzantıları ve modern uygulamaları

    FATMA YERLİKAYA ÖZKURT

    Doktora

    İngilizce

    İngilizce

    2013

    MatematikOrta Doğu Teknik Üniversitesi

    Bilimsel Hesaplama Ana Bilim Dalı

    PROF. DR. GERHARD WILHELM WEBER

  3. Parameter estimation in generalized partial linear models with tikhanov regularization

    Genelleştirilmiş parçalı doğrusal modellerde tikhanov düzenleme ile parametre tahmini

    BELGİN KAYHAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2010

    MatematikOrta Doğu Teknik Üniversitesi

    Bilimsel Hesaplama Ana Bilim Dalı

    PROF. DR. BÜLENT KARASÖZEN

    PROF. DR. GERHARD WİLHELM WEBER

  4. Akım serilerinin modellenmesi

    Modelling of runoff series

    ÇAĞATAY GENÇER

    Yüksek Lisans

    Türkçe

    Türkçe

    1994

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    PROF.DR. R. FERRUH MÜFTÜOĞLU

  5. Sales forecasting in fashion retail industry with classical and machine learning methods

    Moda perakendesi sektöründe klasik ve makine öğrenmesi metodları ile satış tahmini

    HANİFE IŞIK

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Ekonomiİstanbul Teknik Üniversitesi

    Ekonomi Ana Bilim Dalı

    DOÇ. DR. TOLGA YURET