Parameter estimation in generalized partial linear models with tikhanov regularization
Genelleştirilmiş parçalı doğrusal modellerde tikhanov düzenleme ile parametre tahmini
- Tez No: 275854
- Danışmanlar: PROF. DR. BÜLENT KARASÖZEN, PROF. DR. GERHARD WİLHELM WEBER
- Tez Türü: Yüksek Lisans
- Konular: Matematik, İstatistik, Mathematics, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2010
- Dil: İngilizce
- Üniversite: Orta Doğu Teknik Üniversitesi
- Enstitü: Uygulamalı Matematik Enstitüsü
- Ana Bilim Dalı: Bilimsel Hesaplama Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 115
Özet
Özet yok.
Özet (Çeviri)
Regression analysis refers to techniques for modeling and analyzing several variablesin statistical learning. There are various types of regression models. In our study,we analyzed Generalized Partial Linear Models (GPLMs), which decomposes inputvariables into two sets, and additively combines classical linear models with nonlinearmodel part. By separating linear models from nonlinear ones, an inverse problemmethod Tikhonov regularization was applied for the nonlinear submodels separately,within the entire GPLM. Such a particular representation of submodels provides botha better accuracy and a better stability (regularity) under noise in the data.We aim to smooth the nonparametric part of GPLM by using a modied form of Mul-tiple Adaptive Regression Spline (MARS) which is very useful for high-dimensionalproblems and does not impose any specic relationship between the predictor anddependent variables. Instead, it can estimate the contribution of the basis functionsso that both the additive and interaction eects of the predictors are allowed to de-termine the dependent variable. The MARS algorithm has two steps: the forward and backward stepwise algorithms. In the rst one, the model is built by adding basisfunctions until a maximum level of complexity is reached. On the other hand, thebackward stepwise algorithm starts with removing the least signicant basis functionsfrom the model.In this study, we propose to use a penalized residual sum of squares (PRSS) insteadof the backward stepwise algorithm and construct PRSS for MARS as a Tikhonovregularization problem. Besides, we provide numeric example with two data sets; onehas interaction and the other one does not have. As well as studying the regular-ization of the nonparametric part, we also mention theoretically the regularizationof the parametric part. Furthermore, we make a comparison between Innite KernelLearning (IKL) and Tikhonov regularization by using two data sets, with the dier-ence consisting in the (non-)homogeneity of the data set. The thesis concludes withan outlook on future research.
Benzer Tezler
- Parameter estimation in generalized partial linear models with conic quadratic programming
Genelleştirilmiş parçalı doğrusal modellerde ikinci dereceden konik karesel programlama yöntemi ile parametre tahmini
GÜL ÇELİK
Yüksek Lisans
İngilizce
2010
MatematikOrta Doğu Teknik ÜniversitesiBilimsel Hesaplama Ana Bilim Dalı
PROF. DR. BÜLENT KARASÖZEN
PROF. DR. GERHARD WİLHELM WEBER
- Refinements, extensions and modern applications of conic multivariate adaptive regression splines
Konik çok değişkenli uyarlanabilir regresyon eğrilerinin geliştirilmesi, uzantıları ve modern uygulamaları
FATMA YERLİKAYA ÖZKURT
Doktora
İngilizce
2013
MatematikOrta Doğu Teknik ÜniversitesiBilimsel Hesaplama Ana Bilim Dalı
PROF. DR. GERHARD WILHELM WEBER
- Advances in robust identification of spline models and networks by robust conic optimization, with applications to different sectors
Değişik sektörlere uygulamalarıyla birlikte sağlam konik optimizasyon ile eğri modelleri ve ağların sağlam tanımlanmasındaki gelişimler
AYŞE ÖZMEN
Doktora
İngilizce
2015
MatematikOrta Doğu Teknik ÜniversitesiBilimsel Hesaplama Ana Bilim Dalı
PROF. DR. GERHARD WİEHELM WEBER
- Sales forecasting in fashion retail industry with classical and machine learning methods
Moda perakendesi sektöründe klasik ve makine öğrenmesi metodları ile satış tahmini
HANİFE IŞIK
Yüksek Lisans
İngilizce
2020
Ekonomiİstanbul Teknik ÜniversitesiEkonomi Ana Bilim Dalı
DOÇ. DR. TOLGA YURET