Geri Dön

Asidik maden sızıntı sularını (AMS) arıtan akışkan yataklı reaktör performanslarının yapay sinir ağları (YSA) ile modellenmesi

Artificial neural network (ANN) modeling of the performance of fluidized bed reactor in the treatment of the acidic mine drainage water (AMD)

  1. Tez No: 287005
  2. Yazar: BELGİN BABAR
  3. Danışmanlar: YRD. DOÇ. DR. DİLEK ATASOY
  4. Tez Türü: Yüksek Lisans
  5. Konular: Çevre Mühendisliği, Environmental Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2011
  8. Dil: Türkçe
  9. Üniversite: Harran Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Çevre Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 124

Özet

Asidik Maden Sızıntı Sularının arıtımında, akışkan yataklı reaktör performanslarının yapay sinir ağları ile modellenmesi amaçlanmaktadır. Bu kapsamda, TÜBİTAK desteği ile yürütülen bir proje ile işletilen yukarı ve aşağı akışlı akışkan yataklı reaktörlerden alınan belirli giriş ve çıkış atıksu verileri kullanılmıştır. Yapay sinir Ağları esasına göre çalışan Matlab 7.6 Bilgisayar programı aracılığı ile modellemeler yapılmış ve reaktör performanslarının tahmin edilmesine çalışılmıştır. Bu çalışmada, AMS arıtan akışkan yataklı reaktörler için ?işletim süresi, giriş pH, çıkış pH, giriş sülfat, giriş kimyasal oksijen ihtiyacı (KOİ) ve giriş metal? olmak üzere toplam 6 input parametresini kullanarak; ?çıkış sülfat, çıkış KOİ, çıkış alkalinite ve çıkış sülfür? konsantrasyonlarının YSA ile tahmini yapılmıştır. Bu amaçla, 2 senaryo üzerinde çalışılmıştır. İlkinde çıkış pH değeri input parametreleri içerisinde yer alırken (Senaryo-1); ikinci senaryoda (Senaryo-2) çıkış pH değeri input parametreleri arasından çıkarılarak YSA ile reaktör performansının modellenmesi araştırılmıştır. Senaryo-2 ile, AMS arıtımı amaçlı kullanılacak olan bir reaktör henüz kurulmadan performansının tahmin edilmesi hedeflenmiştir. YSA ile akışkan yataklı reaktör performansının modellenmesi çalışmasında; işletim süresi giriş parametreleri arasında yer almıştır. Bunun nedeni ise, reaktör işletimi süresince bakteriyel komünitenin değişmesi ve böylece yeni işletim şartlarına adapte olmasıdır. Dolayısıyla, işletim süresinin giriş parametreleri arasına alınmasıyla, aklimasyon ve kültür farlılıklarından doğan değişimlerin de modellemeye dahil edilebileceği düşünülmüştür.

Özet (Çeviri)

The aim of the study is the Artificial Neural Network Modeling of the fluidized bed reactor (FBR) performance for the treatment of acidic mine drainage (AMD) water. The parameters of influent and effluent wastewater from upflow and downflow fluidized bed reactors which were operating with TÜBİTAK project were used for input and output data. The artificial neural network models for the reactor performance were done with Matlab 7.6 computer program. Operating time, influent pH, effluent pH, influent sulfate, influent COD and influent metal were used as input data. Sulfate, COD, alkalinity and sulphur concentrations in the effluent were predicted by ANN. For this purpose, two scenarios were worked on to modeling of the reactor performances: The effluent pH was participated in the input parameters for the first scenario while the effluent pH was removed from the input parameters for the second scenario. The determination of a non-constructed reactor performance was analysed in the second scenario. The operating time was incorporated to the input parameters in ANN modeling of FBR. This is because, the bacterial community changed during the operating period and adapted to the new operating conditions. Therefore, it was thought that the variation from the acclimation and culture diversity can be regarded in the ANN modeling with the incorporation of the operating time to input parameters.

Benzer Tezler

  1. Arsenik içeren asidik maden sızıntı sularının anaerobik membran biyoreaktör kullanılarak arıtılması ve membran tıkanma özelliklerinin incelenmesi

    Biotreatment of arsenic containing acid mine drainage water in anaerobic membran bioreactor and investigation of membrane fouling properties

    ECE İŞLER

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Biyomühendislikİstanbul Medeniyet Üniversitesi

    PROF. DR. ERKAN ŞAHİNKAYA

    DR. ÖĞR. ÜYESİ ADEM YURTSEVER

  2. Asidik maden sızıntı sularının yer altı suyu kalitesine etkisi: Ergani-Maden Bakır İşletmesi örneği

    Effect of acid mine drainage on groundwater quality: A case study from Ergani-Maden Copper Facility

    ZEKİYE KADİRAĞAGİL

    Yüksek Lisans

    Türkçe

    Türkçe

    2011

    Çevre MühendisliğiHarran Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    DOÇ. DR. M. İRFAN YEŞİLNACAR

  3. Anaerobik perdeli reaktörde (APR) Zn ve Cu içeren asidik maden sızıntı sularının sülfat indirgeyen bakteriler ile arıtımı ve metal geri kazanımı

    Biotreatment of copper and zinc containing acid mine drainage water in anaerobic baffled reactor (ABR) and metal recovery

    ZEYNEP YÜCESOY

    Yüksek Lisans

    Türkçe

    Türkçe

    2011

    Çevre MühendisliğiHarran Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ERKAN ŞAHİNKAYA

  4. Anaerobik perdeli reaktörlerde (APR) bakır ve çinko içeren asidik maden sızıntı sularının arıtımı ve metal geri kazanımı

    Biotreatment of copper and zinc containig acid mine drainage water in anaerobic baffled reactor (ABR) and metal recovery

    ZEYNEP YÜCESOY

    Yüksek Lisans

    Türkçe

    Türkçe

    2011

    Çevre MühendisliğiHarran Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ERKAN ŞAHİNKAYA

  5. Katı atık düzenli depo sahalarında sızıntı suyu geri devir etkilerinin tam ölçekli bir sahada (Odayeri) araştırılması

    Investigation of leachate recirculation effects in a full-scale sanitary landfill (Odayeri)

    BESTEMİN ÖZKAYA

    Yüksek Lisans

    Türkçe

    Türkçe

    2001

    Çevre MühendisliğiYıldız Teknik Üniversitesi

    Çevre Mühendisliği Ana Bilim Dalı

    DOÇ. DR. AHMET DEMİR