Geri Dön

Yapay sinir ağları ile akış kontrolü için sayısal yöntemlerin geliştirilmesi

Development of numerical methods for flow control with the aid of artificial neural networks

  1. Tez No: 289967
  2. Yazar: AKIN PAKSOY
  3. Danışmanlar: YRD. DOÇ. DR. SELİN ARADAĞ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Makine Mühendisliği, Mechanical Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2011
  8. Dil: Türkçe
  9. Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Makine Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 173

Özet

Zamana bağlı iki boyutlu dairesel silindir üzerinde laminer (Re=100) ve türbülanslı (Re=20000) rejimlerdeki akışlar ile zamana bağlı iki boyutlu sürülmüş kavite akışı uygulamalarının temel alındığı bu çalışma ile Dikgen Ayrıştırma Yöntemi (DAY) ve Yapay Sinir Ağları (YSA) yardımıyla gerçek zamanlı bir akış kontrolü stratejisi oluşturmak için zaman gerektiren ve uygulama maliyetlerinin yüksek olduğu Hesaplamalı Akışkanlar Dinamiği (HAD) simülasyonlarına gerek duyulmadan, akış alanının düşük mertebeli modellerinden yola çıkılarak, akışın durumunun yeterli düzeyde tahmin edilebileceği sayısal yöntemlerin geliştirilmesi hedeflenmiştir.DAY uygulaması ile bir dizi anlık görüntü sayısından oluşan ve fiziksel akış karakteristiklerini içeren veri topluluğunun zamana ve mekana bağımlı olan yapıları ayrıştırılarak, çözüme en yüksek enerji düzeyinde (frekansta) katkısı olan ve iz bölgesinde devamlı olarak görünüp kaybolan girdaplar incelenerek, veri topluluğunun temel bileşenleri olanak adlandırılan kipler ve bu kiplerin bağıl genlikleri belirlenmiştir.Akış kontrolü için girdap oluşumu ile ilişkilendirilen yapıların zamana bağlı davranışlarının tayini önem taşımaktadır. YSA uygulamasında, silindir yüzeyine yerleştirilen ve en yüksek aktifliğe sahip olan birkaç ayrık noktadan statik basınç değerleri toplayan sensör verileri ile ağ eğitimi için belirlenen spesifik test durumlarının kip genlikleri kullanılarak diğer test durumları için yeni kip genlikleri (girdap oluşumunun temel bileşenlerinin zamana bağlı davranışları) tahmin edilmiştir.Zamana bağlı iki boyutlu sürülmüş kavite akışı uygulamasında, Reynolds sayısının 100, 500, 1000, 5000 ve 10000 olduğu farklı durumlar için iki boyutlu Navier-Stokes denklemlerinin vortisite-akım fonksiyonu yaklaşımı kullanılarak sayısal çözümlemeleri yapılmıştır. Elde edilen verilere iki boyutlu dairesel silindir uygulamasında kullanılan DAY ve YSA yöntemlerinin uygulanmasıyla kavite akış alanındaki girdap oluşumunun temel bileşenlerinin zamana bağlı davranışları tahmin edilmiştir.

Özet (Çeviri)

In this research, in order to develop a real-time flow control strategy by preventing application of expensive and time-consuming Computational Fluid Dynamics (CFD) simulations, Proper Orthogonal Decomposition (POD) and Artificial Neural Networks (ANN?s) are utilized. Time-dependent two-dimensional laminar (Re=100) and turbulent (Re=20000) fluid flows over a circular cylinder and time-dependent two-dimensional driven cavity flow applications are addressed to develop numerical techniques by observing low-dimensional modeling of the flow fields and to estimate the state of the flow effectively.Proper Orthogonal Decomposition (POD) is a reduced-order modeling technique that enables observation of the chaotic, time-dependent and periodically moving vortices and control of these structures in the flow field. By employing POD, a data ensemble consisting physical flow characteristics within a set of snapshots is separated into its principal components named as modes and relative mode amplitudes according to their energy contents (frequencies).In order to develop a real-time flow control strategy, predictions of mode amplitudes carrying the temporal characteristics of the flow field are essential. The constituted ANN structure predicts mode amplitudes for other test cases where it takes data coming from surface sensors placed on a few discrete points that show the highest activity in terms of static pressure and previously known mode amplitudes of specific test cases.In the application based on time-dependent two-dimensional driven cavity flow, test cases at Reynolds numbers 100, 500, 1000, 5000 and 10000 are investigated numerically by solving two-dimensional Navier-Stokes equations with the vorticity-stream function approach. POD and ANN techniques are also employed for this application to predict temporal characteristics of the flow.

Benzer Tezler

  1. Prediction of COVID 19 disease using chest X-ray images based on deep learning

    Derin öğrenmeye dayalı göğüs röntgen görüntüleri kullanarak COVID 19 hastalığının tahmini

    ISMAEL ABDULLAH MOHAMMED AL-RAWE

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ADEM TEKEREK

  2. Radyal pompa çarkları içerisindeki üç boyutlu sürtmeli ve sürtmesiz akışın sayısal analizi

    Full 3D viscous and inviscid analysis of flow in radial pump impelleri

    AŞKIN KARAKAS

    Doktora

    Türkçe

    Türkçe

    2000

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    DOÇ.DR. ERHAN AYDER

  3. Numerical and experimental investigation of boundary layer transition with active and passive flow control methods

    Sınır tabaka geçişinin aktif ve pasif akış kontrol yöntemleriyle sayısal ve deneysel incelenmesi

    ABDUSSAMET SUBAŞI

    Doktora

    İngilizce

    İngilizce

    2017

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. HASAN GÜNEŞ

  4. A multi-fidelity prediction framework with convolutional neural networks using high-dimensional data

    Yüksek boyutlu veriler ile çok-doğruluklu evrişimsel sinir ağı tabanlı kestirim

    HÜSEYİN EMRE TEKASLAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Uçak ve Uzay Mühendisliği Ana Bilim Dalı

    PROF. DR. MELİKE NİKBAY

  5. Transonik hızda kavite akışına maruz kalan mühimmat ayrılmasının HAD analizi

    The CFD analysis of the store separation subjected to the cavity flow at transonic speed

    SEYFETTİN TÜRK

    Doktora

    Türkçe

    Türkçe

    2021

    Uçak MühendisliğiEskişehir Teknik Üniversitesi

    Uçak Gövde Motor Bakım Ana Bilim Dalı

    PROF. DR. KÜRŞAD MELİH GÜLEREN