Geri Dön

Elektriksel boşalma sesinin tanınması

Recognition of electrical discharge sound

  1. Tez No: 293847
  2. Yazar: SUNA BOLAT SERT
  3. Danışmanlar: PROF. DR. ÖZCAN KALENDERLİ
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2010
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 201

Özet

Bu tez çalışmasında, İTÜ (Maslak) Yüksek Gerilim Laboratuvarı'nda kurulan bir iletim hattı modelinden yüksek gerilim uygulayarak elde edilen duyulabilir korona sesleri kullanılarak iletim hattının akustik davranışı incelenmiştir. Bu amaçla, bir hat modeline farklı genliklerde alternatif ve doğru gerilimler uygulanmıştır. Ses ölçmelerinde kullanılan ses seviyesi ölçü aletinin elektromanyetik parazitlerden ve çevresel gürültülerden etkilenmemesi amacıyla bir metal kafes kullanılmıştır. Yapılan yüksek gerilim deneylerinde kaydedilen korona sesi verileri çeşitli işaret işleme teknikleri ile çözümlenerek, uygulanan yüksek gerilimle ve korona ile ilgili bilgiler elde edilmiştir. Tezde, elde edilen duyulabilir korona sesi verileri kullanılarak, bir yapay sinir ağı (YSA) ile elektriksel boşalmanın oluştuğu gerilimin genliğini belirleme, oluşan boşalmanın yerini bulma, boşalma kaynağını tanıma gibi uygulamalar gerçekleştirilmiştir. Çalışmalar, yüksek gerilim uygulamalarındaki bu tür problemler için, sesin ve yapay sinir ağı kullanılmasının genel, etkili, hızlı ve ekonomik olarak, sonuçlara ulaşılmasını sağladığını göstermiştir.

Özet (Çeviri)

In this thesis, the acoustical behavior of a model transmission line has been analyzed by using corona sounds which were obtained by applying high voltage to the transmission line model installed in ITU (Maslak) High Voltage Laboratory. For this aim, different voltage levels of DC and AC voltages were applied to the line model to produce corona sounds. Against the effects of electromagnetic interference and environmental noises, a metal cage was used. The recorded corona sound data which were acquired from the performed high voltage experiments were analyzed by different signal processing techniques through which information about the applied high voltages and corona were extracted. In the thesis, applications such as estimating the magnitude of voltage at which electrical discharge occurs, determining the discharge location and recognizing the source of discharge have been carried out by training an artificial neural network (ANN) using audible corona sound data. Presented studies show that, using discharge sound and artificial neural networks it is possible to obtain general, cost-effective and fast results for solving of problems such as fault detection, location, measurement and diagnostic at high voltage applications.

Benzer Tezler

  1. EEG sinyalleri kullanarak yeni doğanlarda nöbet tespiti için derin öğrenme yöntemlerinin kullanılması

    Using deep learning methods for seizure detection in newborns by using EEG signals

    MERVE AÇIKOĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    Bilim ve TeknolojiFırat Üniversitesi

    Yazılım Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SEDA ARSLAN TUNCER

  2. Neuro classifiers for condition and bearing health assessment of an electric motor

    Elektrik makinasında durum ve rulman sağlığı değerlendirmesi için nöro sınıflandırıcılar

    MINA GHORBAN ZADEH BADELI

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ DUYGU BAYRAM KARA

  3. Convolutional neural network based partial discharge pattern classification of medium voltage cable terminations

    Orta gerilim kablo başlıklarında evrişimli sinir ağları ile kısmi boşalma örüntü sınıflandırılması

    HALİL İBRAHİM ÜÇKOL

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. AYDOĞAN ÖZDEMİR

  4. Detection and identification of DC corona discharges by using advanced techniques

    DC korona boşalmalarının gelişmiş teknikler ile algılanması ve tanımlanması

    HALİL İBRAHİM ÜÇKOL

    Doktora

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SUAT İLHAN

  5. Elektriksel boşalma ortamından poliimid (PI) yüzeyine çöktürülmüş nano-boyutlu karbon örtünün dielektriğin elektro-fiziksel özelliklerine etkisi

    The influence of nano sized carbon cover precipitated onto polyimide (PI) surface from electrical discharge medium on the electrophysical properties of dielectric

    MURAT KÖSEOĞLU

    Doktora

    Türkçe

    Türkçe

    2010

    Elektrik ve Elektronik Mühendisliğiİnönü Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. HAFIZ ALİSOY