Feature selection using different mutual information estimation methods
Farklı karşılıklı bilgi kestirim yöntemleri kullanarak öznitelik seçimi
- Tez No: 295247
- Danışmanlar: DOÇ. DR. ZEHRA ÇATALTEPE
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2010
- Dil: İngilizce
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 71
Özet
Bu çalışmada, farklı karşılıklı bilgi kestirim yöntemlerinin öznitelik seçimi üzerindeki etkisi incelenmiş, minimum-bolluk-maksimum-ilgi (mRMR) ve karşılıklı bilgi filtresi öznitelik seçim yöntemleri, bölümlemeden daha gelişmiş kestirim yöntemleri olan çekirdek yoğunluk kestirimi (KDE) bazlı ve k en yakın komşu (KNN) bazlı yöntemler kullanılarak iyileştirilmeye çalışılmıştır. Ayrıca bu karşılıklı bilgi kestirim yöntemlerinin yapay ve gerçek veriler üzerindeki başarımı ölçülmüş ve yöntemlerin başarımı altküme seçimi ve birleştirme yolları ile arttırılmaya çalışılmıştır. Altküme seçimi ve birleştirme yöntemlerinin başarımı arttırmadığı, k en yakın komşu bazlı kestirim yönteminin karşılıklı bilgi filtresi için kullanıldığında bölümlemeden daha yüksek başarım sağladığı, fakat mRMR'ın bundan yararlanamadığı görülmüştür.
Özet (Çeviri)
In this study, effect of different mutual information estimation methods on feature selection is examined, minimum-redundancy-maximum-relevance and mutual information filter feature selection methods are tried to be improved by using more advanced mutual information estimation methods than binning like k-nearest-neighbour (KNN) based and kernel density estimation (KDE) based methods. Besides, performances of these mutual information estimation methods on artificial and real data are measured and this performance is tried to be improved by subset selection and combination. It is concluded that subset selection and combination does not improve performance, KNN based estimation method improves performance when used in mutual information filter but mRMR does not benefit from this.
Benzer Tezler
- Extracting cryptocurrency trading signals from raw financial data using technical indicators and deep learning
Teknik göstergeler ve derin öğrenme kullanarak işlenmemiş finansal verilerden kripto para alım ve satım sinyalleri elde etmek
BAŞAK KALFA
Yüksek Lisans
İngilizce
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi ÜniversitesiYönetim Bilişim Sistemleri Ana Bilim Dalı
DR. ÖĞR. ÜYESİ AHMET ONUR DURAHİM
- Ensemble of feature selection models for malware datasets
Kötücül yazılım veri kümeleri için öznitelik seçim modellerinin topluluğu
FARUK CÜREBAL
Yüksek Lisans
İngilizce
2022
Bilim ve TeknolojiKadir Has ÜniversitesiYönetim Bilimleri Ana Bilim Dalı
PROF. DR. HASAN DAĞ
- An experimental analysis of feature selection algorithms in hyperspectral image classification
Hiperspektral görüntülerın sınıflamasında öznitelik seçim algoritmalarının deneysel analizi
HAMED GHOLAMI VIJOUYEH
Yüksek Lisans
İngilizce
2017
İletişim Bilimleriİstanbul Teknik Üniversitesiİletişim Sistemleri Ana Bilim Dalı
YRD. DOÇ. DR. GÜLŞEN TAŞKIN KAYA
- Makine öğrenmesi yöntemleriyle biyomedikal veriden kanser teşhisi
Cancer diagnosis from biomedical data with machine learning methods
ÖZNUR SİNEM SÖNMEZ
Doktora
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Üniversitesi-CerrahpaşaBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MUSTAFA DAĞTEKİN
- Mutual information based feature selection for acoustic autism diagnosis
Akustik otizm teşhisi için ortak bilgiye dayalı öznitelik seçimi
ŞEFİKA YÜZSEVER
Yüksek Lisans
İngilizce
2015
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. SADIK FİKRET GÜRGEN