Geri Dön

Signal based data mining for feature extraction and fault detection

Özellik çıkarımı ve arıza tanısı için işaret tabanlı veri madenciliği

  1. Tez No: 323836
  2. Yazar: SELİM GÜLLÜLÜ
  3. Danışmanlar: PROF. DR. SERHAT ŞEKER
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2012
  8. Dil: İngilizce
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Elektrik Mühendisliği Bilim Dalı
  13. Sayfa Sayısı: 164

Özet

Bu çalışmada, işaret işleme teknikleri ve veri madenciliği yöntemleri kullanılarak özellik çıkarımı ve hata tespiti için yeni bir yöntem geliştirilmiştir. Uygulama ana olarak iki aşamadan oluşmaktadır. Bunlar sırasıyla veri ön-işleme ve yapay sinir ağı aşamalarıdır. Veri ön-işleme aşamasında asenkron bir elektrik motorunun sağlam durumundaki titreşim işareti ham veri olarak kullanılmıştır. Bu aşamada işarete ilk olarak sürekli dalgacık dönüşümü ve Fourier dönüşümü (Güç spektrumu yoğunluğu - GSY) teknikleri uygulanmıştır. Frekans domeninde temsil edilen bu yeni alt-işaret, yapay sinir ağı aşamasında bir öz-ilişkili yapay sinir ağının eğitimi için kullanılmıştır. Eğitim aşamasından sonra benzer veri kümesi ağın geri çağrılmasında kullanılmış ve bu sayede bir arıza eşik değeri belirlenmiştir. Bu yapay sinir ağı, sağlam durumdaki titreşim işaretinin güç spektrumu yoğunluğu ile test edilmiş ve eşik değerini aşan değerler arıza olarak değerlendirilmiştir. Bu model, yapay sinir ağı test aşamasında elde edilen sonuçlarla karşılaştırılıp özellik çıkarımı ve potansiyel hata tespiti açısından yorumlanmıştır. Buna ek olarak yöntem titreşim işaretinin haricinde iki adet simulasyon verisinde de uygulanmıştır. Sonuçlara bakıldığında yöntemin kullanılan tüm veriler için potansiyel arızaları belirlediği gözlenmiştir. Son olarak, çalışmada verilen işlem ve tekniklerin bir kullanıcı tarafından gerçekleştirilebilmesi amacıyla bir bilgisayar uygulaması oluşturulmuştur.

Özet (Çeviri)

In this study, a new method for fault detection and feature extaction is introduced by using signal processing and data mining techniques. The application is consisted of two main phases: data pre-processing and artificial neural network. Vibration signal measurements from the healthy state of an electric motor is used as the raw data for the application. At the data pre-processing phase, continuous wavelet transform and Fourier transform techniques are applied to the vibration signal. At the artificial neural network phase, this sub-signal is given as an input to an auto-associative neural network for training. After the training, the neural network is recalled by the same type of data for identifying a threshold value. At the test phase, the network is tested by the Fourier transform of the signal. According to the comparison with the threshold values, the faulty states are identified. The results are concluded in terms of feature extraction and fault detection of potential defects. In addition to this, the method is applied on two different types of simulation data. The method is capable of identifying the potential defects and faults for all the data provided. Finally, a computer application is developed in order to perform the method.

Benzer Tezler

  1. Data mining for emotion recognition in speech

    Seste duygu tanıma için veri madenciliği

    GAMZE AKKURT

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİzmir Ekonomi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. DEVRİM ÜNAY

  2. Yinelemeli sinir ağları ile sermaye piyasası yön tahmini üzerine bir çalışma

    A study on direction prediction of capital markets with recurrent neural networks

    MUHİDDİN ÇAĞLAR EREN

    Yüksek Lisans

    Türkçe

    Türkçe

    2022

    Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. ALP ÜSTÜNDAĞ

  3. Implementation of KNN, MLP, PCA algorithms on cortex-M4 based embedded system for enose application

    Elektronik burun uygulaması için MLP, PCA ve KNN algoritmalarının cortex M4 tabanlı bir gömülü sistem üzerinde gerçeklemeleri

    LEILA GHORBANI CHONGHORALOUY YEKAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2014

    Mekatronik Mühendisliğiİstanbul Teknik Üniversitesi

    Mekatronik Mühendisliği Ana Bilim Dalı

    PROF. DR. MÜŞTAK ERHAN YALÇIN

  4. Müzik üst-veri tahmini için türkçe şarkı sözü madenciliği

    Turkish lyrics mining for music meta-data estimation

    BAŞAR KIRMACI

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBaşkent Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HASAN OĞUL

  5. Computer network traffic classification using data mining

    Veri madenciliği kullanarak bilgisayar ağ trafiğinin sınıflandırılması

    AZAL MOHSIN JUBOORI AL BAYATI

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolÇankırı Karatekin Üniversitesi

    Elektronik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ SELİM BUYRUKOĞLU