A data mining application on cognitive EEG recording
Bilişsel EEG kayıtları üzerinde veri madenciliği uygulaması
- Tez No: 328301
- Danışmanlar: PROF. DR. C. CENGİZ ÇELİKOĞLU, PROF. DR. MURAT ÖZGÖREN
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, İstatistik, Computer Engineering and Computer Science and Control, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2012
- Dil: İngilizce
- Üniversite: Dokuz Eylül Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İstatistik Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 93
Özet
Bilgisayar ve veri saklama teknolojilerinin gelişmesi veriyi günlük hayatta daha kullanışlı hale getirmek için yeni tekniklerin ortaya çıkmasına sebep olmuştur. Özellikle karmaşık istatistiksel yöntemler, büyük miktarlardaki veriler üzerinde daha kolay uygulanabilir hale gelmiştir. Veri Tabanlarında Bilgi Keşfi ya da Veri Madenciliği isimli bu yeni yaklaşım her alana birçok avantaj getirmiştir. Bu sayede veriden tecrübeye geçiş sağlanmıştır.İnsan vücudu kendi içinde alt sistemleri olan ve çeşitli türlerde veriler üreten bir sistemler bütünüdür. Beyin başlı başına önemli hayati organlardan birisidir. Karmaşık iletişim mekanizmalarına ve henüz keşfedilmemiş birçok bölgeye ve işleve sahiptir. Elektroensefalografi (EEG) beyindeki elektriksel aktivitenin görüntülendiği bir yöntemdir. EEG tekniğinde, kafa üzerine yerleştirilen bir başlıktaki potansiyel fark alıcıları (elektrotlar), beynin bir işlevi ya da uyku sırasında üretilen küçük voltaj değişikliklerini zaman üzerine kaydederler. Bu veriler epilepsi, uyku bozuklukları, biyofizik, nöroloji başta olmak üzere birçok alanda kullanılmaktadır.Bu tez, veri madenciliği yöntemlerinin bazılarını dikotik dinleme testi sırasında kaydedilen EEG verileri üzerinde uygulamayı hedeflemektedir. EEG verisi detaylı olarak incelenmiş, analiz edilmiş, parçalara ayrılmış ve etiketlendirilmiştir. Farklı uyaranların etkisiyle oluşan tepkileri ve farklı elektrotlardaki sinyalleri karşılaştırmak ve benzerlik ya da benzemezliği tespit etmek üzere ZM istatistiği temel araç olarak kullanılmıştır.ZM istatistiği sinyallerin şiddet benzerliğini belirlemede güçlü bir araç olmasına karşın şekil benzerliğini tespit etmede güçlü değildir. Tezde bu eksikliği gidermek amacıyla sinyallerin davranış benzerliğini de bulabilmek için veriler fark sinyallerine dönüştürülmüştür. ZM istatistiğini dönüştürülen verilere uygulayarak daha güvenilir sonuçlar elde edilmiştir. Dönüşümden önce bulunamayan benzerlikler fark edilir olmuştur. Verinin bu şekilde düzenlenmesiyle farklı büyüklüklerde benzer davranış gösteren sinyaller de belirlenebilmektedir.Bunun yanısıra, elde edilen benzerliği desteklemek amacıyla elektrotlar arasında bir kümeleme çalışması da gerçekleştirilmiş ve dendrogram grafiği ile sunulmuştur.
Özet (Çeviri)
Development of computer and data-storage technology caused new techniques to arise to get these data useful in daily life. Especially complex statistical methods became easily usable on large amounts of data. This new approach (named as Knowledge Discovery in Databases or Data Mining) came with many advantages for every domain. It provided the transition from data to knowledge.Human body is a complex system with subsystems in itself generating many data in various types. Brain is individually one of the vital parts of human body. It has complex communication mechanisms and many unexplored regions and functions. Electroencephalography (EEG) is a method which is used to present the electrical activity of the brain. In EEG technique, electrodes located on head receives small voltage changes produced by brain over time during a process or even in asleep. These data are used for many areas in especially epilepsy, sleep disorders, biophysics, neuroscience, etc.This thesis aims applying some of the data mining methods on EEG data recorded during dichotic listening test. EEG data were examined in detail, analysed, partitioned and labelled. Statistical similarity measure ZM statistic was used as a tool for comparing the similarity or dissimilarity of signals received from different electrodes for different dichotic stimuli.ZM statistic is a powerful tool in identifying similarity of signals in amplitude but not in shape. To avoid this deficiency data were transformed into difference signals to detect the behavioural similarity. Applying ZM to this transformed signals gave more reliable results in signal similarity. Some of the similarities which were not found before transformation arose in the transformed signals similarity. By this adjustment of data, signals moving together in different amplitudes were also detected.Besides, a clustering was performed on electrodes using dendrogram visualization to support the similarity results.
Benzer Tezler
- Konteyner liman operasyonlarının makine öğrenmesi yöntemleri ile analizi
Analysis of container port operations using machine learning methods
ÜSTÜN ATAK
Doktora
Türkçe
2022
Deniz Bilimleriİstanbul Teknik ÜniversitesiDeniz Ulaştırma Mühendisliği Ana Bilim Dalı
PROF. DR. YASİN ARSLANOĞLU
PROF. DR. TOLGA KAYA
- Eğitimsel veri madenciliği ve bir uygulaması
Educational data mining and an application
YASEMİN YAKUPOĞLU
Yüksek Lisans
Türkçe
2018
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. BAŞAR ÖZTAYŞİ
- Alternatif sosyal katmaların bilişsel alışveriş sepetlerinin veri madenciliği ile incelenmesi ve uygulanması
Analaysing and application of alternative social layers and cognitive market basket with data mining
SEREN SEZEN KARALÖK
Yüksek Lisans
Türkçe
2019
Endüstri ve Endüstri MühendisliğiKırıkkale ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. SÜLEYMAN ERSÖZ
- Sosyal medya mesajlarında veri madenciliği ile bilgi keşfi ve görsel analitik ortamda sunulması: COVID-19 tweet veri seti örneği
Information discovery with data mining in social media messages andpresenting in visual analytic environment: COVID-19 tweet dataset example
BURAK ÇAĞLAR
Doktora
Türkçe
2023
Jeodezi ve FotogrametriNecmettin Erbakan ÜniversitesiHarita Mühendisliği Ana Bilim Dalı
DOÇ. DR. HÜSEYİN ZAHİT SELVİ
- Fen bilgisi öğretmeni adaylarının çevre okuryazarlığının geliştirilmesine yönelik olarak argümantasyon ile probleme dayalı öğrenme yaklaşımının kullanımı
The usage of argumentation-based and problem-based learning approaches intended for developing the environmental literacy of pre-service science teachers
PINAR FETTAHLIOĞLU
Doktora
Türkçe
2012
Eğitim ve ÖğretimGazi Üniversitesiİlköğretim Ana Bilim Dalı
PROF. DR. MUSTAFA AYDOĞDU