Gerçek tıbbi veriler üzerinde veri madenciliği yöntemlerini kullanarak hastalık teşhisi
Diagnosis of disease by using data mining methods on real medical data
- Tez No: 334825
- Danışmanlar: YRD. DOÇ. METİN KESLER
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Mühendislik Bilimleri, Computer Engineering and Computer Science and Control, Science and Technology, Engineering Sciences
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2012
- Dil: Türkçe
- Üniversite: Bilecik Şeyh Edebali Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 78
Özet
Günümüzde veri madenciliği çoğu kritik problemin çözümünde önemli bir rol oynamaktadır. Özellikle tıp alanında medikal verilerin veritabanlarında saklanmasıyla birlikte oluşan büyük veri yığınları, veri madenciliği yöntemleri için çok tercih edilen bir uygulama alanı olmaktadır. Veri madenciliği tekniklerini kullanan biyomedikal sistemler sayesinde hızlı ve etkili bir şekilde bilgilerin elde edilmesi, hekimlere ve hastalara büyük fayda sağlamaktadır.Bu tez çalışmasında k-en yakın komşu (KNN) ve k-means algoritmaları detaylı bir şekilde incelenmiştir. Ayrıca bu algoritmalar kullanılarak tıp alanında hekimlerin kullanabileceği, dermatolojik hastalıkların teşhisi için tahmin yapabilen ve hasta kayıtlarının nitelikleri arasındaki ilişkileri analiz etme imkanı sunabilen yardımcı bir karar verme sistemi tasarlanmış ve gerçekleştirilmiştir.Anahtar Kelimeler Veri madenciliği, K en yakın komşu, K-means, Biyomedikal, Tıp Bilişimi, Dermatoloji
Özet (Çeviri)
Nowadays data mining plays a significant role in solving most of the critical problems. Especially in medical field, storage of medical data in databases creates a large mass of data which is being the most preferred application area for data mining methods. Obtaining information quickly and efficiently through the biomedical systems which use data mining techniques, provide a great benefit to physicians and patients.In this thesis k-nearest neighbor (KNN) and k-means algorithms have been investigated in detail. Also using these algorithms an assistant decision-making system which is available to physicians in the medical field, can predict for the diagnosis of dermatological diseases and provide an opportunity to analyze the relationships between characteristics of patient records has been designed and carried out.Keywords Data mining, K nearest neighbour, K-means, Biomedicine, Medical Informatics, Dermatology.
Benzer Tezler
- Yaygın hesaplama kullanılarak hastalıkların teşhisi
Diagnosing illnesses using pervasive computing
CANAN BAYRAKTAR
Yüksek Lisans
Türkçe
2011
Mühendislik BilimleriHaliç ÜniversitesiBilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı
PROF. DR. HALUK GÜMÜŞKAYA
- Prediction of COVID 19 disease using chest X-ray images based on deep learning
Derin öğrenmeye dayalı göğüs röntgen görüntüleri kullanarak COVID 19 hastalığının tahmini
ISMAEL ABDULLAH MOHAMMED AL-RAWE
Yüksek Lisans
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ADEM TEKEREK
- New approach to unsupervısed based classıfıcatıon on mıcroarray data
Mi̇krodi̇zi̇li̇m veri̇lerden danışmansız öğrenmeye dayalı sınıflamada yeni̇ yaklaşım
ERDAL COŞGUN
Doktora
İngilizce
2013
BiyoistatistikHacettepe ÜniversitesiBiyoistatistik Ana Bilim Dalı
PROF. DR. ERGUN KARAAĞAOĞLU
- Deep unfolding for clutter removal in ground penetrating radar
Yere nüfuz eden radarda kargaşa gidermek için derin katman açma
SAMET ÖZGÜL
Yüksek Lisans
İngilizce
2023
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesiİletişim Sistemleri Ana Bilim Dalı
PROF. DR. IŞIN ERER
- Hastane veri tabanında bilgi keşfi
Knowledge discovery in hospital database
MERVE GÜLŞAH ULUSOY
Yüksek Lisans
Türkçe
2017
BiyoistatistikEge ÜniversitesiBiyoistatistik ve Tıbbi Bilişim Ana Bilim Dalı
PROF. DR. SONER DUMAN