Genetik algoritmalar ve bulanık üyelik fonksiyonlarıyla hibrit Bayes yapay sinir ağları
Hybrid Bayesian neural networks with genetic algorithms and fuzzy membership functions
- Tez No: 351932
- Danışmanlar: PROF. DR. NALAN CİNEMRE
- Tez Türü: Doktora
- Konular: Matematik, İstatistik, Mathematics, Statistics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2012
- Dil: Türkçe
- Üniversite: Mimar Sinan Güzel Sanatlar Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İstatistik Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 95
Özet
Bu çalışmanın amacı, dinamik ve doğrusal olmayan sistemlerin faktörlerini bulanık ve stokastik ortamda en iyi biçimde temsil edecek modellerin kestiriminde kullanılacak özgün algoritmaların geliştirilmesidir. Dinamik sistemlerde, veriler anlık olarak değerlendirildiklerinden verinin hem olasılık dağılımının hem de olabilirlik dağılımının birlikte ele alınması daha hassas sonuçların elde edilmesini sağlayacaktır. Ayrıca, doğrusal olmayan sistemlerde giriş ve çıkış değişkenleri arasındaki fonksiyonel yapı hakkındaki ön bilgi ya yoktur ya da çok azdır. Böyle durumlarda yapay sinir ağları giriş ve çıkış değişkenleri arasındaki fonksiyonel yapıyı belirlemek için oldukça kullanışlı araçlardır. Bu çalışmada, Bayes yapay sinir ağlarının yinelenen hiper-parametreli normal yaklaşımında (Gaussian approach with recursive hyperparameters) ve tam Bayes (full Bayesian approach) yaklaşımında kullanılan Monte Carlo (MC) algoritmaları, bulanık üyelik fonksiyonları ve Genetik Algoritmalar (GA) ile hibritleştirilmiştir. Ayrıca, GA ve MC işlevleri içinde bulanık belirsizliği ölçmek için bulanık üyelik fonksiyonlarından yararlanılmıştır. Böylece, Bayes YSA nın parametre ve hiper-parametrelerini daha etkin bir biçimde kestirmek için hibrit Bayes öğrenim yaklaşımları geliştirilmiştir. Uygulama bölümünde, Bayes yapay sinir ağları için önerilen öğrenme algoritmalarının performansları geleneksel yapay sinir ağlarınınkiyle karşılaştırılarak sonuçlar tartışılmıştır.
Özet (Çeviri)
The aim of this study is to improve the novel algorithms, which estimate the models that represent accurately to factors of dynamic and nonlinear systems in the fuzzy and stochastic environment. In dynamic systems, modeling with possibilistic and probabilistic distribution to uncertainties included in data set allows more robust analysis. In nonlinear systems, the pre-knowledge about the functional structure between inputs and outputs is either unavailable or insufficient. In such situations, the neural networks are useful tools to determine the functional structure between inputs and outputs. However, the traditional neural networks with mean squared errors suffer from the approximation and estimation errors. These errors can be decreased by the Bayesian neural networks simultaneously, since Bayesian learning provides a consistent way to penalize the excessive complex models. In this study, Monte Carlo (MC) algorithms used in Gaussian approach with recursive hyperparameters and full Bayesian approach of Bayes Neural Networks are hybridized with Genetic Algorithms (GA) and the fuzzy membership functions. Besides, to evaluate fuzzy uncertainty in MC and GA processes, the fuzzy membership functions are used. Thus, the novel hybrid Bayes learning approaches, which effectively estimate parameters and hyperparameters of Bayes Neural Networks, are improved. The software of the improved algorithms is written in MATLAB package program. In application parts, the performances of the improved approaches are compared with ones of traditional approaches, and then outcomes are discussed.
Benzer Tezler
- Hybrid bayesian neural networks with genetic algorithms and fuzzy membership functions
Genetik algoritmalar ve bulanık üyelik fonksiyonlarıyla hibrit bayes yapay sinir ağları
OZAN KOCADAĞLI
Doktora
İngilizce
2012
İstatistikMimar Sinan Güzel Sanatlar Üniversitesiİstatistik Ana Bilim Dalı
PROF. DR. NALAN CİNEMRE
- Bulanık tabanlı ve programlanabilir mantık kontrolörleri ile trafik sinyazlizasyon sistemi
Başlık çevirisi yok
MURAT ŞEKER
Yüksek Lisans
Türkçe
1998
Elektrik ve Elektronik MühendisliğiGebze Yüksek Teknoloji EnstitüsüElektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. M. RAGIP BAŞBUĞ
- Learning of interval Type-2 fuzzy logic systems using big bang – big crunch optimization
Aralık değerli Tip-2 bulanık sistemlerin büyük patlama – büyük çöküş optimizasyonuyla eğitilmesi
CİHAN ÖZTÜRK
Yüksek Lisans
İngilizce
2014
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. ENGİN YEŞİL
- Yapay bağışıklık algoritmaları kullanılarak bulanık sistem tasarımı
The fuzzy system designing using artificial immune system algorithms
AYŞE MERVE ACILAR
Doktora
Türkçe
2013
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSelçuk ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. AHMET ARSLAN
- Yapay zeka metotlarının bir sınıflandırma probleminde karşılaştırılması
Comparison of artificial intelligience methods for a classification problem
NİLGÜN ŞENGÖZ
Yüksek Lisans
Türkçe
2016
Endüstri ve Endüstri MühendisliğiSüleyman Demirel ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. GÜLTEKİN ÖZDEMİR