Yapay bağışıklık sistemine dayalı yeni bir aritmi sınıflama tekniği
A new arrhythmia classification technique based on artificial immune system
- Tez No: 360554
- Danışmanlar: YRD. DOÇ. DR. MEHMET RECEP BOZKURT
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2014
- Dil: Türkçe
- Üniversite: Sakarya Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik ve Elektronik Mühendisliği Bölümü
- Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Sayfa Sayısı: 113
Özet
Aritmilerin sınıflandırılması işleminde elektrokardiyogram (EKG) kayıtlarının incelenmesine yönelik birçok çalışma mevcuttur. Bu çalışmalar genel olarak ya EKG kayıtlarından şekilsel özniteliklerin veya frekans alanındaki katsayılardan oluşan özniteliklerin sınıflandırılması şeklinde yapılmıştır. Literatürde birçok çalışma olmasına rağmen, araştırmacılar farklı aritmi türlerini sınıflandırmak için farklı öznitelikler, sınıflandırıcılar, eğitim ve test kümeleri kullanmaktadırlar. Çalışmaların sonucunda hangi öznitelik kullanılarak, hangi aritmi türünde hangi sınıflandırıcıların daha iyi sonuçlar verdiğini saptamak zordur. Bu tez çalışmasında amaç, zaman ve frekans alanı özniteliklerinden oluşan birçok farklı öznitelik grubu kullanılarak, Yapay Bağışıklık Sistemi'ne (YBS) dayalı yeni bir aritmi sınıflama tekniği geliştirmektir. Ek olarak, YBS'nin standart Klonlama Seçim Algoritması (KSA) orijinal adıyla Clonal Selection Algorithm (CSA) ve diğer sık kullanılan YSA ile sınıflandırma işlemleri yapıp, bu tez çalışması kapsamında geliştirilen Koşul Tabanlı Klonlama Seçim Algoritmasını (KT-KSA) mukayese etmektir. Bu tez kapsamında hem yeni geliştirilen algoritmanın güvenilirliği hem de hangi özniteliklerin daha iyi sonuçlar verdiği araştırılmıştır. Ayrıca 6 farklı sınıflandırıcı ve 15 farklı öznitelik grubu kullanıldığından dolayı hangi sınıflandırıcıların hangi öznitelik gruplarında nasıl bir başarı elde ettiği de ortaya çıkmıştır. Çalışma sonuçları ROC tabloları ve hata matrisi tablolarında verilmiş olup, ortalama hassasiyet tablosunun grafiğine göre KT-KSA'nın standart KSA'dan daha yüksek bir başarım elde ettiği açıkça görülmektedir. Ayrıca hem zaman hem de frekans özniteliklerinin birlikte kullanımının tüm sınıflandırıcılarda başarımı arttırdığı da ortaya çıkarılmıştır.
Özet (Çeviri)
There are many studies on examining the electrocardiogram (ECG) records in the classification of the arrhythmia. These studies have generally been performed as classifications of the morphological features or as classifications of the coefficients in the frequency field of the ECG records. Although there are many studies in the literature, researchers have been using features, classifiers and education-testing sets to classify different arrhythmia. Right at this point, it is difficult to determine which features and classifiers should be used to give better results in which arrhythmia types. Aim of this thesis, a new arrhythmia classification technique based on AIS has been developed and tested by using many different feature groups that have been formed from time and frequency fields. The algorithm has been called as CB-CSA. Moreover, CSA and within ANN which are frequently used as arrhythmia classifiers, have been used to make comparisons. It has been observed that the developed CB-CSA gives better results when compared to other algorithms. Both reliability of new developed algorithm and give better results of which attributes was investigated in this thesis. Also set of 6 different classifiers and 15 different attributes which are utilized in the attribute group of classifiers, which has also emerged as a success how. And, how a success was obtained in which feature groups and in which classifiers has emerged owing to using 6 different classifiers and 15 different feature groups. The study results are given in ROC tables and error matrix tables. According to line chart of overall average sensitivity table, it becomes obvious that the suggested CB-CSA gives better results than the classical CSA. Moreover, it is also clear that combined use of both time and frequency attributes, each classifier gives better results when compared with the other feature groups.
Benzer Tezler
- Generation of a CRISPR/Cas based genome editing system for MEFV gene in familial mediterranean fever-specific induced pluripotent stem cells
Ailesel Akdeniz ateşine özgü uyarılmış pluripotent kök hücrelerdeki MEFV geni için CRISPR/Cas temelli genom yazılım sisteminin oluşturulması
GÜLNİHAL KAVAKLIOĞLU
Yüksek Lisans
İngilizce
2016
GenetikKoç ÜniversitesiMoleküler Biyoloji ve Genetik Ana Bilim Dalı
YRD. DOÇ. TEVFİK TAMER ÖNDER
- Derin öğrenme ve büyük veri analitiği yöntemleriKullanarak Covid-19 yayılımının ileriye dönük tahmini
Forecasting the spread of covid-19 using deep learning and big data analytics methods
CYLAS KIGANDA
Yüksek Lisans
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Bilimleri Ana Bilim Dalı
PROF. DR. MUHAMMET ALİ AKCAYOL
- Bağımsızlık sonrası kazakistan'da sosyal ve ekonomik dönüşüm
Social and economic transformation in kazakhstan after the independence
ARİF AKBAŞ
Yüksek Lisans
Türkçe
2011
EkonomiTrakya ÜniversitesiÇalışma Ekonomisi ve Endüstri İlişkileri Ana Bilim Dalı
DOÇ. DR. AYHAN GENÇLER
- Etmen tabanlı bir grid sisteminde CSP yaklaşımı kullanılarak güçlü taşınabilirlikli görevlerle ağ trafiği yükü dengeleme
Network load balancing with strong migration in an agent based grid system using CSP approach
ZAFER ALTUĞ SAYAR
Yüksek Lisans
Türkçe
2012
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. NADİA ERDOĞAN
- Machine-learning approaches for neurological disorder diagnosis from genomic and neuroimaging data
Genomik ve nörogörüntüleme verilerinden nörolojik bozukluk teşhisi için makine öğrenmesi yaklaşımları
İSMAİL BİLGEN
Doktora
İngilizce
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. BEHÇET UĞUR TÖREYİN