Geri Dön

Nearest neighbor discriminant analysis based face recognition using ensembled gabor features

Parçalı gabor öznitelikleri kullanarak en yakın komşu ayrışım analizi tabanlı yüz tanıma

  1. Tez No: 371544
  2. Yazar: ONUR DOLU
  3. Danışmanlar: PROF. DR. MUHİTTİN GÖKMEN
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2009
  8. Dil: İngilizce
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Bilişim Enstitüsü
  11. Ana Bilim Dalı: İleri Teknolojiler Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 77

Özet

Son yıllarda, ışık varyasyonlarına ve yüz ifade değişikliklerine karşı gürbüz olduğu üzere yüz tanıma alanında Gabor öznitelikleri tabanlı yüz temsil etme çok umut vaad edici sonuç vermiştir. Seçilen uzamsal frekans, uzamsal lokalizasyon ve yönelime göre yerel yapıyı hesaplaması, elle işaretlendirmeye ihtiyaç duymaması Gabor özniteliklerini efektif yapan özellikleridir.Bu tez çalışmasındaki katkı, Gabor süzgeçleri ve En Yakın Komşu Ayrışım Analizi'nin (EYKAA) güçlerini birleştirerek önemli ayrışım öznitelikleri ortaya çıkaran Gabor En Yakın Komşu Sınıflandırıcısı (GEYKS) genişletip Parçalı Gabor En Yakın Komşu Sınıflandırıcısı (PGEYKS) metodunu ortaya koymaktır. PGEYKS; alçaltılmış gabor öznitelikleri barındıran farklı segmanları kullanarak, her biri ayrı dizayn edilen birçok EYKAA tabanlı bileşen sınıflandırıcılarını bir araya getiren grup sınıflandırıcısıdır. Tüm gabor özniteliklerinin alçaltılmış boyutu tek bir EYKAA bileşeninden çıkarıldığı gibi, PGEYKS; ayrışım bilgi kaybını minimum yapıp 3S (yetersiz örnek miktarı) problemini önleyerek alçaltılmış gabor öznitelikleri içindeki ayrıştırabilirliği daha iyi kullanır. PGEYKS yönteminin tanıma başarımı karşılaştırmalı performans çalışması ile gösterilmiştir. Farklı ışıklandırma ve yüz ifadesi deişiklikleri barındıran 200 sınıflık FERET veritabanı alt kümesinde, 65 öznitelik için PGEYKS %100 başarım elde ederek atası olan GEYKS'nın aldığı %98 başarısını ve diğer GFS (Gabor Fisher Sınıflandırıcı) ve GTS (Gabor Temel Sınıflandırıcı) gibi standard methodlardan daha iyi sonuçlar vermiştir. Ayrıca YALE veritabanı üzerindeki testlerde PGEYKS her türlü (k, alpha) çiftleri için GEYKS'ten daha başarılıdır ve 14 öznitelik için step size = 5, k = 5, alpha = 3 parametlerinde %96 tanıma başarısına ulaşmıştır.

Özet (Çeviri)

In last decades, Gabor features based face representation performed very promising results in face recognition area as its robust to variations due to illumination and facial expression changes. The properties of Gabor are, which makes it effective, it computes the local structure corresponding to spatial frequency (scale), spatial localization, and orientation selectivity and no need for manual annotations.The contribution of this thesis, an Ensemble based Gabor Nearest Neighbor Classifier (EGNNC) method is proposed extending Gabor Nearest Neighbor Classifier (GNNC) where GNNC extracts important discriminant features both utilizing the power of Gabor filters and Nearest Neighbor Discriminant Analysis (NNDA). EGNNC is an ensemble classifier combining multiple NNDA based component classifiers designed respectively using different segments of the reduced Gabor feature. Since reduced dimension of the entire Gabor feature is extracted by one component NNDA classifier, EGNNC has better use of the discriminability implied in reduced Gabor features by the avoiding 3S (small sample size) problem as making minimum loss of discriminative information. The accuracy of the EGNNC is shown by comparative performance work. Using a 200 class subset of FERET database covering illumination and expression variations, EGNNC achieved 100% recognition rate, outperforming its ancestor GNNC perform 98 percent as well as standard methods such GFC and GPC for 65 features. Also for the YALE database, EGNNC outperformed GNNC on all (k, alpha) tuples and EGNNC reaches 96 percent accuracy in 14 feature dimension, along with parameters step size = 5, k = 5, alpha = 3.

Benzer Tezler

  1. Gabor feature based face recognition using nearest neighbor discriminant analysis

    En yakın komşu ayrışım analizi kullanarak gabor öznitelikleri tabanlı yüz tanıma

    KADİR KIRTAÇ

    Yüksek Lisans

    İngilizce

    İngilizce

    2008

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. MUHİTTİN GÖKMEN

  2. Görüntü işleme ve esnek hesaplama yöntemleri kullanılarak down sendromunun ayırt edilmesi

    Discrimination of down syndrome by using image processing and soft computing methods

    ŞAFAK SARAYDEMİR

    Doktora

    Türkçe

    Türkçe

    2013

    Elektrik ve Elektronik MühendisliğiErciyes Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. NECMİ TAŞPINAR

    PROF. DR. OSMAN EROĞUL

  3. Facial expression recognition based on facial anatomy

    Yüz anatomisine dayalı ifade tanıma

    KRİSTİN SURPUHİ BENLİ

    Doktora

    İngilizce

    İngilizce

    2013

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolIşık Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. MUSTAFA TANER ESKİL

  4. Antikanser peptidlerin sınıflandırma algoritmaları ile tahmini

    Prediction of anticancer peptides using by classification algorithms

    RANA SU

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    BiyokimyaMimar Sinan Güzel Sanatlar Üniversitesi

    İstatistik Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ BİLGE ÖZLÜER BAŞER

  5. Yüz resimlerinden cinsiyet tayini

    Gender classification from pictures of human faces

    ÖZLEM ÖZBUDAK

    Yüksek Lisans

    Türkçe

    Türkçe

    2009

    Biyomühendislikİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. ECE OLCAY GÜNEŞ