Geri Dön

Protein function prediction using hidden Markov models

Saklı Markov modelleri kullanarak protein fonksiyon öngörüsü

  1. Tez No: 371550
  2. Yazar: CANER KÖMÜRLÜ
  3. Danışmanlar: DOÇ. DR. ZEHRA ÇATALTEPE
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2008
  8. Dil: İngilizce
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Bilişim Enstitüsü
  11. Ana Bilim Dalı: İleri Teknolojiler Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 124

Özet

Saklı Markov modellerininin biyoinformatik alanında kullanılmaya başlanması ile üzerine düşülen konu HMM profilleri olmuştur. Saklı Markov modellerinden önce çoklu hizalama yöntemleri ile üretilen profiller, bu modellerin kullanılması ile daha başarılı ve yüksek doğrulukla üretilmeye başladı. Uzak homoloji kavramının bu modellerle çalışmalara dahil edilmesi bu sayede gerçekleşti. Uzak homoloji üzerine geliştirilen araçlar ve bu araçların kullandığı diğer araçların başında, HHsearch (HMM HMM search), PRC (Profile Comparer), SAM (Sequence Alignment Modelling), HMMER gelir.Bu çalışmada HMMER, profil-dizi kıyaslaması yoluyla benzerlik matrisi üretiminde, HHsearch profil-profil kıyaslaması yoluyla benzerlik matrisi üretiminde, PRC yine profil-profil kıyaslaması yoluyla benzerlik matrisi üretiminde kullanıldı. Bu yöntemlerde gerekli yerlerde PSI-BLAST, ClustalW ve Kalign, hizalama ve demetleme yöntemleri için kullanıldı. Veri olarak Protein Data Bank veritabanınıdan Gene Ontology'ye bağlı olarak oluşturulan 5 sınıflı protein veritabanı, yine aynı veri kümesinin zenginleştirilmiş sürümü ve NR veri kümesi kullanıldı. Benzerlik matrislerinin üretiminin neticesinde elde edilen veri, örüntü tanıma tekniklerinde kullanıldı. 5 sınıflı veri kümesi için dizi-profil ve profil-profil kıyaslamasının katar hizlama yöntemlerinden daha kötü sonuç verdiği bulundu. İkincil yapının HMM'de hesaba katılmasının fonksiyon öngörüsünde faydalı olduğu görüldü. NR veri kümesi ile zenginleştirilmiş veri kümesinin profil üretiminde faydalı olduğu görüldü.

Özet (Çeviri)

The profile-HMM's became popular with the use of hidden Markov models in bioinformatics. Profiles, which were conventionally produced using alignment methods, became more accurate and successfull by means of hidden Markov models. As a consequence, remote homolgs were included into function prediction studies with these models.In this study, HMMER is used in sequence-profile comparison, HHsearch is used in profile-profile comparison, PRC is used in profile-profile comparison for similarity matrix production. PSI-BLAST, ClustalW and Kalign are used in alignment and clustering steps. As the data set, 5-class protein database generated from Protein Data Bank database with respect to Gene Ontology Annotation is used. In addition, its variant, the enriched data set and NR data set are used. The similarity matrices produced by HMMER, HHSearch and PRC methods are used as inputs to machine learning techniques. For the 5-class data set used, it is found out that sequence-HMM-profile and HMM profile-profile methods cannot perform as well as sequence aligment techniques. It is also found out that using secondary structure in addition to the amino acid sequence helps with protein function prediction. Enrichment of data set with NR data is found to help with function prediction.

Benzer Tezler

  1. De novo peptide design strategies

    Peptid dizayn stratejileri

    EVRİM BESRAY ÜNAL

    Doktora

    İngilizce

    İngilizce

    2011

    Mühendislik BilimleriKoç Üniversitesi

    Hesaplamalı Bilimler ve Mühendislik Ana Bilim Dalı

    PROF. DR. ATTİLA GÜRSOY

    PROF. DR. BURAK ERMAN

  2. Allelik heterojenitenin gözlendiği kas distrofilerinin biyoenformatik araçlar kullanılarak araştırılması

    Investigation of muscular dystrophies with allelic heterogeneity using bioinformatics tools

    AYŞE ECE ÇALI DAYLAN

    Doktora

    Türkçe

    Türkçe

    2015

    Tıbbi BiyolojiHacettepe Üniversitesi

    Tıbbi Biyoloji Ana Bilim Dalı

    PROF. DR. PERVİN RUKİYE DİNÇER

  3. Alignment and compression-based protein function prediction using secondary structure

    Hizalama ve sıkıştırma tabanlı protein fonksiyon öngörüsünde ikincil yapının katkısı

    ASLI FİLİZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2008

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    İleri Teknolojiler Ana Bilim Dalı

    DOÇ. DR. ZEHRA ÇATALTEPE

  4. Protein işlev kestiriminde yapısal bilginin katkısı ve dizi geçiş olasılıkları ile peptit sınıflandırma

    Improvement of protein function prediction using structural information and peptide classification using syntactic transition probabilities

    ESER AYGÜN

    Yüksek Lisans

    Türkçe

    Türkçe

    2009

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ZEHRA ÇATALTEPE

  5. Heterojen biyomedikal verinin bilgi çizgeleri ve derin öğrenme tabanlı analizi ile protein fonksiyonlarının otomatik tahmini

    Automated prediction of protein functions with knowledge graph representations and deep learning-based analysis of heterogeneous biomedical data

    ERVA ULUSOY

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe Üniversitesi

    Biyoinformatik Ana Bilim Dalı (Disiplinlerarası)

    DOÇ. DR. TUNCA DOĞAN