Geri Dön

On the robustness of privacy-preserving collaborative filtering schemes

Gizlilik-tabanlı ortak filtreleme metotlarının gürbüzlüğü üzerine

  1. Tez No: 392208
  2. Yazar: İHSAN GÜNEŞ
  3. Danışmanlar: DOÇ. DR. HÜSEYİN POLAT
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: İngilizce
  9. Üniversite: Anadolu Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 122

Özet

Gizlilik-tabanlı ortak filtreleme artan ilgi görmektedir. Gizliliği ihlal etmeden doğru öneriler üreten değişik algoritmalar vardır. Ortak filtreleme algoritmalarında olduğu gibi gizlilik-tabanlı ortak filtreleme algoritmaları da şilin ataklarına maruz kalabilir. Bu atakların amacı belli ürünlerin popüleritesini artırmak veya azaltmaktır. Bunlar sistemin genel performansını etkileyebilir. Bu nedenle, bu tür atakların gizliliği koruyarak nasıl tasarlanacağı, gizlilik-tabanlı ortak filtreleme algoritmalarının ne kadar gürbüz oldukları, şilin profillerin nasıl tespit edileceği ve bunların analizlerinin yapılması önemlidir. Bu tezde öncelikle gizlilik endişeleri olduğunda şilin atakların nasıl tasarlanacağı çalışılmıştır. Ayrıca gizliliği koruyan hafıza-tabanlı, model-tabanlı ve hibrit ortak filtreleme algoritmalarının gürbüzlük analizleri yapılmıştır. Şilin atakların maskelenmiş profiller içeren veri tabanlarında nasıl tespit edilebilecekleri araştırılmıştır. Varolan şilin profil tespit etme metotlarına ek olarak, yeni bir şilin atak tespit algoritması önerilmiştir. Genel performansın analizi için gerçek verilerle deneyler yapılmıştır. Bu deney sonuçları gizliliği koruyarak etkili şilin ataklarının tasarlanabileceğini göstermiştir. Ayrıca mevcut şilin profil tespit metotlarının maskelenmiş veri tabanlarında şilin ataklarını etkili şekilde tespit edebildiklerini göstermiştir. Bunlara ek olarak, yeni metodun şilin profilleri başarılı şekilde tespit ettiği gözlenmiştir. Son olarak, hafıza-tabanlı ve hibrit algoritmalara göre model-tabanlı gizliliği koruyan ortak filtreleme algoritmalarının şilin ataklarına karşı daha gürbüz oldukları görülmüştür.

Özet (Çeviri)

Privacy-preserving collaborative filtering has been receiving increasing attention. There are various algorithms providing accurate recommendations while preserving privacy. Like collaborative filtering algorithms, privacy-preserving collaborative filtering methods might be subjected to shilling attacks. Such attacks are employed by malicious users to increase/decrease the popularity of some target items. They might affect the overall performance of recommendation systems. Therefore, it is imperative to design such attacks with privacy concerns, determine how robust the privacy-preserving collaborative filtering schemes are, how to find out fake profiles, and analyze them. In this dissertation, designing shilling attacks with privacy concerns is studied. Also, robustness analysis of various privacy-preserving collaborative filtering schemes (memory-based, model-based, and hybrid methods) is performed. Determining fake or shilling profiles from perturbed databases is scrutinized. Besides employing the modified existing detection methods, a new shilling attack detection algorithm is proposed. Real data-based experiments are conducted for assessing the overall performance. Empirical outcomes show that designing effective shilling attacks with privacy concerns is possible. Also, existing detection methods can be effectively used to determine fake profiles from masked data. In addition, the novel detection method is successful on filtering out shilling profiles. Compared to memory-based and hybrid schemes, privacy-preserving model-based recommendation algorithms are very robust against shilling attacks.

Benzer Tezler

  1. Shilling attack design and detection on masked binary data

    Gizlenmiş ikili veriler üzerinde şilin atak tasarımı ve tespiti

    ZEYNEP BATMAZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAnadolu Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HÜSEYİN POLAT

  2. Developing techniques for robustness of privacy-preserving distributed collaborative filtering

    Gizliliği koruyan dağıtık veri tabanlı ortak filtreleme metotlarının gürbüzlüğü için teknikler geliştirilmesi

    BURCU YILMAZEL

    Doktora

    İngilizce

    İngilizce

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAnadolu Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. CİHAN KALELİ

  3. Learning efficient visual embedding models under data constraints

    Veri kısıtlamaları altında verimli görüntü gömme modelleri öğrenme

    MERT BÜLENT SARIYILDIZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SELİM AKSOY

    YRD. DOÇ. DR. RAMAZAN GÖKBERK CİNBİŞ

  4. Gizlilik-tabanlı yüzey eğilimi analizi

    Privacy-preseving trend surface analysis

    SALİH DEMİR

    Doktora

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAnkara Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ BÜLENT TUĞRUL

  5. Privacy preserving and robust watermarking on sequential genome data using belief propagation and local differential privacy

    Dizisel genetik veriler ̇için ̇inanç yayımı ve lokal diferansiyel gizlilik kullanılarak oluşturulan güçlü ve gizlilik koruyucu filigran teknikleri

    ABDULLAH ÇAĞLAR ÖKSÜZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. UĞUR GÜDÜKBAY

    YRD. DOÇ. DR. ERMAN AYDAY