Veri madenciliği yöntemleri ile kardiyovasküler hastalık tahminin yapılması
Cardiovascular disease prediction using data mining techniques
- Tez No: 392880
- Danışmanlar: DOÇ. DR. MEHMET ALPER TUNGA
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2015
- Dil: Türkçe
- Üniversite: Bahçeşehir Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgi Teknolojileri Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 91
Özet
Bu çalışmada biyomedikal veriler incelenerek dünyanın bir numaralı ölüm sebebi olan kalp ve damar hastalıklarının erken teşhisine katkıda bulunabilecek başarılı bir model oluşturmak hedeflenmiştir. Çalışmada kullanılan veri kümesi 604 kayıt içermektedir. Üç farklı yöntem kullanılarak referans değer aralıklarına göre dönüştürülen bu veri ile üç veri kümesi elde edilmiştir. Oluşan bu üç veri kümesi üzerinde nitelik seçim işlemleri ile belirlenen parametrelere, on sınıflandırma yöntemi uygulanmıştır. Veri kümeleri ve kullanılan algoritmaların başarı durumları incelenmiş ve bu incelemeyi desteklemek amacıyla diğer bazı performans ölçme metrikleri de kullanılarak en başarılı veri kümesi ve algoritma belirlenmiştir. Bu çalışma, oluşan modeli kullanarak hasta laboratuvar sonuçlarından otomatik olarak tanı üreten bir program yazılması ile geliştirilebilir.
Özet (Çeviri)
In this study the main purpose is to build a successful model using a biomedical data set that will have a contribution to the diagnosis of cardiovascular disease which is the most common cause of death in the world. The data set used in this study contains 604 records. This data set was transformed according to the reference ranges of parameters using three different methods. Three new data sets were obtained after the transformation process. Future selection methods were applied on each data set to get correct parameter group for modelling. Ten different classification techniques were applied to these data sets to build a model. The most successful data set and algortithm were detected by examining and comparing accuracy of the models. Additional performance evaluation metrics were also used to support the mentioned comparisons. This study can be improved by implementing an application for automatically diagnosis of cardiovascular disease using the model.
Benzer Tezler
- Sağlık verilerinde veri kalitesi ve sağlık sektöründe veri madenciliği analiz yöntemleri ve uygulama örnekleri
Data quality in health data and data mining analysis methods and application examples in health sector
AHMET KOÇAK
Yüksek Lisans
Türkçe
2023
Yönetim Bilişim SistemleriGazi ÜniversitesiSağlık Bilişimi Ana Bilim Dalı
PROF. DR. MEHMET ALİ ERGÜN
- Kalp hastalığı tanısında Weka tabanlı makine öğrenmesi algoritmalarının performans analizi
Performance analysis of Weka-based machine learning algorithms in heart disease diagnosis
BEKİR CAN TELKENAROĞLU
Yüksek Lisans
Türkçe
2024
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolİZMİR BAKIRÇAY ÜNİVERSİTESİAkıllı Sistemler Mühendisliği Ana Bilim Dalı
DOÇ. DR. BAHAR DEMİRTÜRK
- Veri madenciliği yöntemleri kullanarak hava kirliliği tahmini
Prediction of air pollution using data mining methods
KIYMET KAYA
Yüksek Lisans
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ŞULE GÜNDÜZ ÖĞÜDÜCÜ
- Kardiyovasküler hastalıklarının teşhisine yönelik makine öğrenmesi algoritmaları ile karar destek sistemi tasarımı
Decision support system design with machine learning algorithms for the diagnosis of cardiovascular diseases
AMIR KARAJ
Yüksek Lisans
Türkçe
2023
Bilim ve TeknolojiMarmara ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ZEHRA AYSUN ALTIKARDEŞ
PROF. DR. ALİ SERDAR FAK
- Web platformunda kardiyovasküler risk takibi ve bireyselleştirilmiş öneri sistemi
Cardiovascular risk monitoring and individualized recommendation system in web platform
UFUK SARIKAYA
Yüksek Lisans
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ZEHRA AYSUN ALTIKARDEŞ
PROF. DR. ALİ SERDAR FAK