Bulanık kümelerde optimizasyon problemi ve çözüm yöntemleri
Optimization problem and solution methods in fuzzy sets
- Tez No: 39317
- Danışmanlar: DOÇ.DR. İBRAHİM EKSİN
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 1993
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 79
Özet
ÖZET Bu çalışma bulanık kümelerde optimizasyon probleminin çözümü üzerine yapılmıştır. Optimizasyon problemi, bulanık küme teorisinin yapısı gereği kolaylık la çözül ememektedir. Bu çözümü elde etmek amacıyla ilk olarak bula nık küme teorisinin genel tanımlan incelenmiştir. En basit yapılı bulanık kontrolörün tanıtımından sonra, problemin çözümünde temel oluşturan bulanık ilişki denk lemlerinin çözümleri incelenmiştir. Çalışma boyunca üç ayrı bulanık kontrolör yapısı göz önüne alınmıştır. Bunlardan ilki kendini düzenleyen kontrolördür. ikincisi ise optimizasyon problemi için elde edilen ilk çözüm yöntemidir. Son olarak ise ilk ikisine oranla daha başarılı sonuç veren alternatif çözüm yöntemi tanıtılmıştır. VII
Özet (Çeviri)
SUMMARY OPTIMIZATION PROBLEM AND SOLUTION METHODS IN FUZZY SETS This work is on the solution of the optimiza tion problem on fuzzy systems. To reach a Plausible solution a wide study was done on the fuzzy set theory. Some basic notations are necessary to go with the study. Also the solution lies on the basis of solutions to fuzzy relational equations. A fuzzy set A defined in universe of discourse X is expressed by its membership function. A s *?*[(), 1] where A(x) expresses the extent which x fulfills the category specified by A. Any fuzzy set can be represented by the sum of its elements. Therefore A(x) can be shown as, ?/. A(x) or A = SrAL*>. With A and B, two fuzzy sets defined in X, the following can be defined A(x) - 1 - A(x) (AlİB) (x) = max(A(x),B(x) ) (Afifi) (x) - min(A(x), B(x) ) men t s such that By a t - norm we mean afunction of two argu- t : [0,1] x [0,1]-[0,1] a) For x£y,w*z,xtw £ ytz b) It is commutative. c) It is associative. d) It satisfies x t 0 = 0 and x t 1 = x VIIIBy an s - norm, we mean a function of two arguments t : [0,1] X [0,1]-[0,1] such that a) for x*y,w£z,xsw*ysz b) it is commutative. c) it is associative. d) it satisfies xs0 = x;xs1 = 1. By a fuzzy relation R, defined in the carte sian product X x Y, we mean a mapping R : *xY- [0,1] (2.10) Thus, to each pair of elements (x,y) a number, which expresses the strength of ties, is assigned. For a given R and X couple Y is gathered by their composition. Most frequently used compositions are i ) sup - t ; r(y) = (x°r) (y) = supr [X(x) tR(x,y)] ii ) inf - s ; Y(y) = (XOR) (y) = infr [X(x) sR(x,y)] If the sup-t composition, Y = X. R and its dual y «x o R is given two main problems can be taken into considera tion; i) determine R for given X, Y ii) determine X for given R, Y IXX can be accepted as the input of a system, while Y is the output and R is the characteristic of it. The following theorems with the following definitions give the solutions to above questions. AtpB » 8Upzc(A t C £ B) and ApB - infıc(A s c * B) Theorem 1. : (1) If XeF(X) and Y?F(Y) fulfil Y = X. R the greatest fuzzy relation satisfying the formula can be given by if = X Q Y (2) If RSF(XxY) and YeF(Y) satisfy Y = X. R the maximum input can be given by the equation £ t, t ? (0.11 2. Interactions of control rules There is interaction between control rules if the following holds 3. Consistency of control rules. The points given above are for the simple fuzzy controller. Moreover, a different approach to fuzzy controller is reached by fuzzy modelling. Let X, U, Y be state, control and output spaces respectively. Therefore, a system of order p can be modelled by Yk+p " Xk*p * & Here, R : U x X x X (p times) x X - [0,1] and S : X x Y - [0,13 XIFor the problem given here, the system is said to be strictly known. Therefore R and S is clear for the problem. The performance index is given by the above equation J - 2?.i B Yi =
Benzer Tezler
- Type-2 fuzzy model inversion methods and fuzzy model based controller design
Tip-2 bulanik modellerin tersinin alinmasi ve bulanik model tabanli kontrolör tasarimi
TUFAN KUMBASAR
Doktora
İngilizce
2012
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
PROF. DR. İBRAHİM EKSİN
- Design and deployment of deep learning based fuzzy logicsystems
Derin öğrenme tabanlı bulanık sistemlerin geliştirilmesi ve uygulanması
AYKUT BEKE
Doktora
İngilizce
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiKontrol ve Otomasyon Mühendisliği Ana Bilim Dalı
DOÇ. DR. TUFAN KUMBASAR
- Data driven optimization and applications in complex real-life problems
Veri güdümlü optimizasyon ve kompleks gerçek hayat problemlerinde uygulamaları
NURULLAH GÜLEÇ
Doktora
İngilizce
2024
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. ÖZGÜR KABAK
- Stokastik talep altında telekomünikasyon ağlarındaki aracı firmalara yönelik kar en büyüklemesi problemi
Profit maximization problem for intermediaries in telecommunication networks under stochastic demand
HASAN HÜSEYİN TURAN
Doktora
Türkçe
2012
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. MEHMET NAHİT SERARSLAN
- Dendritik nöron model yapay sinir ağlarına dayalı yeni sezgisel bulanık zaman serisi öngörü yöntemleri
New intuitionistic fuzzy time series forecasting methods based on dendritic neuron model artificial neural networks
TURAN CANSU
Doktora
Türkçe
2024
İstatistikGiresun Üniversitesiİstatistik Ana Bilim Dalı
PROF. DR. EREN BAŞ
PROF. DR. TAMER AKKAN