A flexible data mining architecture for monitoring data streams
Başlık çevirisi mevcut değil.
- Tez No: 400335
- Danışmanlar: AMBUJ K. SINGH
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2005
- Dil: İngilizce
- Üniversite: University of California Santa Barbara
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Bilgisayar Bilimleri Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 231
Özet
Özet yok.
Özet (Çeviri)
Data streams are ubiquitous: performance measurements in business process management,faults and alarms in network traffic management, transactions in retailchains, ATM operations in banks, log records generated by web servers, and sensornetwork data are some specific examples. In almost all of these applications,the data volume is massive, up to several terabytes. Data volume increases evenfurther with the rapid arrival of new tuples. Traditional DBMS?s are ill-equippedfor processing of data streams in real time, and do not provide adequate support forhandling continuous queries posed over these streams.This dissertation outlines models and issues towards designing an efficient DataStream Management System (DSMS) called Stardust. The system can handle adiverse set of continuous queries that fit naturally into the mold of data stream applications.We developed wavelet-based approximation schemes that maintain multiplelevels of information over streams of data in order to answer queries efficiently.In centralized DSMS models, a stream is summarized at a central site, and alluser queries are processed at this site. In data and query intensive environments, thecentral site can become a bottleneck. As a remedy to this problem, we developedadaptive replication algorithms for dissemination of stream summaries computed ata central site to interested clients. We tested the distributed version of the systemon a number of testbeds. In the first scenario, Stardust exploits the scalability andload balancing of communication provided by content-based routing schemes for efficientdistributed stream processing. In the second scenario, we integrated Stardustinto a real-time decision support system for nondestructive health monitoring using awireless network of sensors. The system trades off accuracy for efficient processingof sensor data in order to save the communication overhead and power-consumption.Finally, we built an event detection framework for monitoring a set of distributednetwork elements. The goal is to detect potentially interesting incidents specifiedby users in terms of a multitude of race conditions across a set of routers whilemaintaining a low monitoring overhead.
Benzer Tezler
- Veri madenciliği ve demetleme
Data mining and clustering
AHMET CÜNEYD TANTUĞ
Yüksek Lisans
Türkçe
2002
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. EŞREF ADALI
- Genişbandlı şebekelerde hizmet adaptasyon protokolleri
Başlık çevirisi yok
RECEP EVREN PALANDUZ
Yüksek Lisans
Türkçe
1999
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. GÜNSEL DURUSOY
- Yapılarda hareket problemleri ve derz uygulamaları
Movement problems and joint applications in structures
HAKAN KARACA
Yüksek Lisans
Türkçe
1998
Mimarlıkİstanbul Teknik ÜniversitesiMimarlık Ana Bilim Dalı
DOÇ. DR. LEMİ YÜCESOY
- Relaying opportunities for wireless networks by applying network coding
Kablosuz ağlar için ağ kodlamalı aktarma fırsatları
SEMİHA TEDİK BAŞARAN
Doktora
İngilizce
2019
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. GÜNEŞ ZEYNEP KARABULUT KURT