Geri Dön

Computational genomic signatures and metagenomics

Başlık çevirisi mevcut değil.

  1. Tez No: 400755
  2. Yazar: ÖZKAN UFUK NALBANTOĞLU
  3. Danışmanlar: PROF. KHALID SAYOOD
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2011
  8. Dil: İngilizce
  9. Üniversite: University of Nebraska-Lincoln
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 201

Özet

Özet yok.

Özet (Çeviri)

Mathematical characterizations of biological sequences form one of the main elements of bioinformatics. In this work, a class of DNA sequence characterization, namely computational genomics signatures, which capture global features of these sequences is used to address emerging computational biology challenges. Because of the species specificity and pervasiveness of genome signatures, it is possible to use these signatures to characterize and identify a genome or a taxonomic unit using a short genome fragment from that source. However, the identification accuracy is generally poor when the sequence model and the sequence distance measure are not selected carefully. We show that the use of relative distance measures instead of absolute metrics makes it possible to obtain better detection accuracy. Furthermore, the use of relative metrics can create opportunities for using more complex models to develop genome signatures, which cannot be used efficiently when conventional distance measures are used. Using a relative distance measure and a model based on the relative abundance of oligonucleotides in a genome fragment, a novel genome signature was defined. This signature was employed to address a class of metagenomics problems. The metagenomics approach enables sampling and sequencing of a microbial community without isolating and culturing single species. Determining the taxonomic classii fication of the bacterial species within the microbial community from the mixture of short DNA fragments is a difficult computational challenge. We present supervised and unsupervised algorithms for taxonomic classification of metagenomics data and demonstrate their effectiveness on simulated and real-world data. The supervised algorithm, RAIphy, classifies metagenome fragments of unknown origin by assigning them to the taxa, defined in a signature database of previously sequenced microbial genomes. The signatures in the database are updated iteratively during the classification process. Most metagenomics samples include unidentified species, thus they require clustering. Pseudo-assembly of fragments, followed by clustering of taxa is employed in the unsupervised setting. The signatures developed in this work are more specific-specific and pervasive than any signatures currently available in the literature, and demonstrate the potential and viability of using genome signatures to solve various metagenomics problems as well as other challenges in computational biology.

Benzer Tezler

  1. Topluluk yöntemi ve ilaç imzaları kullanılarak anti kanser ilaçların aktivite tahmini

    Activity prediction of anti cancer drugs by using ensemble learning and drugs' signatures

    ERTAN TOLAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTOBB Ekonomi ve Teknoloji Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. MEHMET TAN

  2. Computational prediction of genomic and proteomic biomarker candidates for reproductive system associated women diseases

    Üreme sistemiyle ilişkili kadın hastalıkları için genomik ve proteomik aday biyobelirteçlerin hesapsal olarak öngörülmesi

    MEDİ KORİ

    Yüksek Lisans

    İngilizce

    İngilizce

    2015

    BiyomühendislikMarmara Üniversitesi

    Biyomühendislik Ana Bilim Dalı

    DOÇ. DR. KAZIM YALÇIN ARĞA

  3. Assessment and correction of errors in DNA sequencing technologies

    DNA dizilim teknolojilerindeki hatalar üzerine değerlendirme ve hataların düzeltilmesi

    CAN FIRTINA

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. CAN ALKAN

  4. High-performance meta-genomic gene identification

    Başlık çevirisi yok

    İBRAHİM SAVRAN

    Doktora

    İngilizce

    İngilizce

    2014

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolUniversity of South Caroline

    Bilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı

    PROF. JOHN R. ROSE

  5. Ranking cancer drivers via betweenness-based outlier detection and random walks

    Kanser sürücü genlerinin arasındalık bazlı aykırılık tanımı ve rastgele yürüyüşle tespiti

    AISSA HOUDJEDJ

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAntalya Bilim Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. CESİM ERTEN

    DOÇ. DR. HİLAL KAZAN