Computational genomic signatures and metagenomics
Başlık çevirisi mevcut değil.
- Tez No: 400755
- Danışmanlar: PROF. KHALID SAYOOD
- Tez Türü: Doktora
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2011
- Dil: İngilizce
- Üniversite: University of Nebraska-Lincoln
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 201
Özet
Özet yok.
Özet (Çeviri)
Mathematical characterizations of biological sequences form one of the main elements of bioinformatics. In this work, a class of DNA sequence characterization, namely computational genomics signatures, which capture global features of these sequences is used to address emerging computational biology challenges. Because of the species specificity and pervasiveness of genome signatures, it is possible to use these signatures to characterize and identify a genome or a taxonomic unit using a short genome fragment from that source. However, the identification accuracy is generally poor when the sequence model and the sequence distance measure are not selected carefully. We show that the use of relative distance measures instead of absolute metrics makes it possible to obtain better detection accuracy. Furthermore, the use of relative metrics can create opportunities for using more complex models to develop genome signatures, which cannot be used efficiently when conventional distance measures are used. Using a relative distance measure and a model based on the relative abundance of oligonucleotides in a genome fragment, a novel genome signature was defined. This signature was employed to address a class of metagenomics problems. The metagenomics approach enables sampling and sequencing of a microbial community without isolating and culturing single species. Determining the taxonomic classii fication of the bacterial species within the microbial community from the mixture of short DNA fragments is a difficult computational challenge. We present supervised and unsupervised algorithms for taxonomic classification of metagenomics data and demonstrate their effectiveness on simulated and real-world data. The supervised algorithm, RAIphy, classifies metagenome fragments of unknown origin by assigning them to the taxa, defined in a signature database of previously sequenced microbial genomes. The signatures in the database are updated iteratively during the classification process. Most metagenomics samples include unidentified species, thus they require clustering. Pseudo-assembly of fragments, followed by clustering of taxa is employed in the unsupervised setting. The signatures developed in this work are more specific-specific and pervasive than any signatures currently available in the literature, and demonstrate the potential and viability of using genome signatures to solve various metagenomics problems as well as other challenges in computational biology.
Benzer Tezler
- Topluluk yöntemi ve ilaç imzaları kullanılarak anti kanser ilaçların aktivite tahmini
Activity prediction of anti cancer drugs by using ensemble learning and drugs' signatures
ERTAN TOLAN
Yüksek Lisans
Türkçe
2016
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTOBB Ekonomi ve Teknoloji ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. MEHMET TAN
- Computational prediction of genomic and proteomic biomarker candidates for reproductive system associated women diseases
Üreme sistemiyle ilişkili kadın hastalıkları için genomik ve proteomik aday biyobelirteçlerin hesapsal olarak öngörülmesi
MEDİ KORİ
Yüksek Lisans
İngilizce
2015
BiyomühendislikMarmara ÜniversitesiBiyomühendislik Ana Bilim Dalı
DOÇ. DR. KAZIM YALÇIN ARĞA
- Assessment and correction of errors in DNA sequencing technologies
DNA dizilim teknolojilerindeki hatalar üzerine değerlendirme ve hataların düzeltilmesi
CAN FIRTINA
Yüksek Lisans
İngilizce
2017
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. CAN ALKAN
- High-performance meta-genomic gene identification
Başlık çevirisi yok
İBRAHİM SAVRAN
Doktora
İngilizce
2014
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolUniversity of South CarolineBilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı
PROF. JOHN R. ROSE
- Ranking cancer drivers via betweenness-based outlier detection and random walks
Kanser sürücü genlerinin arasındalık bazlı aykırılık tanımı ve rastgele yürüyüşle tespiti
AISSA HOUDJEDJ
Yüksek Lisans
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAntalya Bilim ÜniversitesiElektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. CESİM ERTEN
DOÇ. DR. HİLAL KAZAN