Geri Dön

Probabilistic and geometric shape based segmentation methods

Başlık çevirisi mevcut değil.

  1. Tez No: 400924
  2. Yazar: MELİH ŞEREF ASLAN
  3. Danışmanlar: DR. ALY A. FARAG
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2012
  8. Dil: İngilizce
  9. Üniversite: University of Louisville
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 173

Özet

Özet yok.

Özet (Çeviri)

Image segmentation is one of the most important problems in image processing, object recognition, computer vision, medical imaging, etc. In general, the objective of the segmentation is to partition the image into the meaningful areas using the existing (low level) information in the image and prior (high level) information which can be obtained using a number of features of an object. As stated in [1, 2], the human vision system aims to extract and use as much information as possible in the image including but not limited to the intensity, possible motion of the object (in sequential images), spatial relations (interaction) as the existing information, and the shape of the object which is learnt from the experience as the prior information. The main objective of this dissertation is to couple the prior information with the existing information since the machine vision system cannot predict the prior information unless it is given. To label the image into meaningful areas, the chosen information is modelled to fit progressively in each of the regions by an optimization process. The intensity and spatial interaction (as the existing information) and shape (as the prior information) are modelled to obtain the optimum segmentation in this study. The intensity information is modelled using the Gaussian distribution. Spatial inv teraction that describes the relation between neighboring pixels/voxels is modeled by assuming that the pixel intensity depends on the intensities of the neighboring pixels. The shape model is obtained using occurrences of histogram of training shape pixels or voxels. The main objective is to capture the shape variation of the object of interest. Each pixel in the image will have three probabilities to be an object and a background class based on the intensity, spatial interaction, and shape models. These probabilistic values will guide the energy (cost) functionals in the optimization process. This dissertation proposes segmentation frameworks which has the following properties: i) original to solve some of the existing problems, ii) robust under various segmentation challenges, and iii) fast enough to be used in the real applications. In this dissertation, the models are integrated into different methods to obtain the optimum segmentation: 1) variational (can be considered as the spatially continuous), and 2) statistical (can be considered as the spatially discrete) methods. The proposed segmentation frameworks start with obtaining the initial segmentation using the intensity/spatial interaction models. The shape model, which is obtained using the training shapes, is registered to the image domain. Finally, the optimal segmentation is obtained using the optimization of the energy functionals. Experiments show that the use of the shape prior improves considerably the accuracy of the alternative methods which use only existing or both information in the image. The proposed methods are tested on the synthetic and clinical images/shapes and they are shown to be robust under various noise levels, occlusions, and missing object information. Vertebral bodies (VBs) in clinical computed tomography (CT) are segmented using the proposed methods to help the bone mineral density measurements and fracture analysis in bones. Experimental results show that the proposed solutions eliminate some of the existing problems in the VB segmentation. One of the most important contributions of this study is to offer a segmentation framework which can be suitable to the clinical works.

Benzer Tezler

  1. Rastgele markov alanları ve hücresel sinir ağları ile görüntü işleme

    Image processing with markow random fields and cellular neural networks

    MAHMUT ŞAMİL SAĞIROĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2001

    Elektrik ve Elektronik Mühendisliğiİstanbul Üniversitesi

    Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. OSMAN NURİ UÇAN

  2. Probabilistic seismic hazard assessment of Eastern Marmara and evaluation of Turkish Earthquake Code requirements

    Doğu Marmara'daki sismik tehlikenin olasılıksal analizi ve Türk Deprem Şartnamesi ile karşılaştırılması

    RECAİ SONER OCAK

    Yüksek Lisans

    İngilizce

    İngilizce

    2011

    Deprem MühendisliğiOrta Doğu Teknik Üniversitesi

    İnşaat Mühendisliği Bölümü

    YRD. DOÇ. ZEYNEP GÜLERCE

  3. 2.5D object modeling using gaussian processes for robotic mapping and navigation

    Robotik haritalama ve yöngüdüm için gauss süreçler ile 2.5B nesne modelleme

    ERDEM TORAMAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik MühendisliğiOrta Doğu Teknik Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    DOÇ. DR. EMRE ÖZKAN

  4. Akıllı anten sistemi kullanan kablosuz algılayıcı ağlarda bağlantı analizi ve konum belirleme algoritması

    Connectivity analysis and development of a localization algorithm for smart antenna system integrated wireless sensor networks

    KEREM KÜÇÜK

    Doktora

    Türkçe

    Türkçe

    2010

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKocaeli Üniversitesi

    Elektronik-Bilgisayar Eğitimi Ana Bilim Dalı

    DOÇ. DR. ADNAN KAVAK

  5. Konik yayılım yaklaşımıyla kaya düşmesi potansiyelinin değerlendirilmesine yönelik bir yöntem önerisi

    A method proposal for evaluation of rockfall potential by cone propagation approach

    AYCAN KALENDER

    Doktora

    Türkçe

    Türkçe

    2017

    Jeoloji MühendisliğiHacettepe Üniversitesi

    Jeoloji Mühendisliği Ana Bilim Dalı

    PROF. DR. HARUN SÖNMEZ