Geri Dön

Modeling and simulation of transient enhanced diffusion based on interactions of point and extended defects

Başlık çevirisi mevcut değil.

  1. Tez No: 400935
  2. Yazar: ALP H. GENCER
  3. Danışmanlar: PROF. SCOTT DUNHAM
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 1999
  8. Dil: İngilizce
  9. Üniversite: Boston University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 83

Özet

Özet yok.

Özet (Çeviri)

As device sizes in VLSI technology get smaller, the importance of predictive process modeling increases. One of the biggest challenges in predictive process modeling today lies in modeling of Transient Enhanced Diffusion (TED). TED is the greatly enhanced diffusion of dopants in silicon seen during annealing of the damage created by the ion implantation of the dopants. As one moves to smaller thermal budgets, TED is often the primary source of diffusion and thus determines the final junction depth. It is known that TED is caused by the excess interstitial concentration that persists due to ion implantation. But how this excess interstitial concentration evolves over time and affects the diffusion of dopants remains unclear. Our work attempts to understand the physical processes occurring during ion implant annealing, express them in a mathematical model, integrate this model into a diffusion equation solver and quantitatively match the experimental observations. To this end, we have developed a solid physical model (KPM) for the evolution of extended defects (f311gdefects and dislocation loops) which are observed under TED conditions. We have also developed different versions of KPM that have applicability under different circumstances, and have different levels of computational efficiency. We believe that the range of models developed will give the user the ability to make a compromise between accuracy and computational time. We have applied KPM to f311gdefects that are observed under non-amorphizing implant conditions and we were able to get a good agreement. We have then used this model to predict TED behavior based on marker layer experiments and we found a good match. To extend the model to dislocation loops, we assumed that dislocation loops form by unfaulting of f311gdefects as observed experimentally. We accounted for this transformation in our model and we were able to obtain a good match to the experimental data without any modifications in the f311gdefect model. Our work also involved in developing a computer software that is capable of solving the models that we have postulated. To this end, we have developed DOPDEES, a one-dimensionalmulti purpose partial differential equation initial value solver. To enable faster technology transfer, we have also developed Process Modeling Modules (PMM) which consists a set of scripts that encapsulate the models that we have developed in a ready to use form.

Benzer Tezler

  1. Performance evaluatıon of a staged combustıon cycle lıquıd rocket engıne rs-25 usıng a dıgıtal twın approach ın sıemens amesım

    Siemens amesim ortaminda sayisal ikiz yaklaşimiyla rs-25 kademeli yanma çevrimli sivi yakitli roket motorunun performans değerlendirmesi

    YASİR ŞİMES

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Havacılık ve Uzay Mühendisliğiİstanbul Teknik Üniversitesi

    Uçak ve Uzay Mühendisliği Ana Bilim Dalı

    PROF. DR. İBRAHİM ÖZKOL

  2. Otomotiv ön cam buz çözme performansının sayısal olarak modellenmesi ve buzun erimesine etki eden parametrelerin irdelenmesi

    Numerical modeling of windshield de-icing performance and parametric evaluation of ice melting process

    SERHAN TATAR

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. LEVENT ALİ KAVURMACIOĞLU

  3. Ayrık fourier dönüşümü dağılımları kullanılarak güç sistemi geçici olaylarının derin öğrenme ile sınıflandırılması ve elektrik ark ocağı sisteminin modellenmesi

    Classification of power system transient events by deep learning and modeling the electric arc furnace system using discrete fourier transform distributions

    GÖRKEM GÖK

    Doktora

    Türkçe

    Türkçe

    2023

    Elektrik ve Elektronik MühendisliğiGazi Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. MÜSLÜM CENGİZ TAPLAMACIOĞLU

    PROF. ÖZGÜL SALOR DURNA

  4. Şebeke oluşturan eviricilerin modellenmesi ve farklı kontrolcü yaklaşımları altında analizi

    Modeling of grid-forming inverters and analysis under different control approaches

    ALPER ÇAKIROĞLU

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Elektrik ve Elektronik MühendisliğiTOBB Ekonomi ve Teknoloji Üniversitesi

    Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. COŞKU KASNAKOĞLU

  5. Motor kontrol ve öğrenmeye ilişkin nöral yapıların modellenmesi ve donanım üzerinde bir gerçekleme

    Modeling neural structures related to motor control and learning and an implementation on hardware

    SERHAT ÇAĞDAŞ

    Doktora

    Türkçe

    Türkçe

    2025

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. NESLİHAN SERAP ŞENGÖR