Fabrication of plasmonic nanostructures with electron beam induced deposition
Başlık çevirisi mevcut değil.
- Tez No: 401076
- Danışmanlar: PROF. DR. L. KUIPERS
- Tez Türü: Doktora
- Konular: Fizik ve Fizik Mühendisliği, Physics and Physics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2013
- Dil: İngilizce
- Üniversite: University of Twente
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 102
Özet
Özet yok.
Özet (Çeviri)
The work described in this thesis was shaped by the goal|coming up new approaches to fabricate plasmonic materials with electron beam induced deposition (EBID). One-step, bottom-up and direct-write are typical adjectives that are used to indicate the advantageous properties of this technique. These properties enable us to produce complex, three-dimensional materials even on non- at substrates in a rapid fashion. However, to fabricate plasmonic materials with EBID one needs to overcome some diculties and limitations. The major challenge to solve is the impurity issue of the deposited metallic structures. We circumvent the impurity problem by deposition of silica instead of a metal. Metallic nanostructures are obtained by subsequent conformal thin gold lm coating. At the end of the coating process we obtain a core-shell type plasmonic structure. With this method, as demonstrated in Chapter 3, we fabricate high aspect ratio ground plane dispersive nanoantennas. The characterization of the structures with angleresolved cathodoluminescence (CL) and numerical calculations with nite element modeling (FEM) reveal that the nanoantennas work like their rf counterparts, but now in the visible domain and with an e ective length that is roughly twice their geometrical length. Furthermore, the core-shell structure of the nanoantennas can be exploited to control and tune the optical properties by altering the shell thickness. In other words the method to circumvent the intrinsic problem of EBID of metals yields an unique advantage for plasmonic structures. The capacity to build three-dimensional complex structures is a striking feature of EBID. We exploit this feature to fabricate a plasmonic chiral nanoantanna array composed of three-turn helices. The core-shell structure is achieved with the same method that is used to fabricate the ground plane nanoantennas. As described in Chapter 4, we observe that the fabrication process that requires a signi cant amount of time |like the fabrication of our helix array| can su er from a decreased amount of precursor delivery with time. This decrease a ects the geometry and size of the individual nanostructures. We circumvent this issue by depositing the helix array part by part with certain amount of pause in between the subsequent depositions. We also observed that, given a xed replenishment rate of the precursor, electron beam current and dwell time yield di erent geometries even when the total electron dose is kept constant. In Chapter 5 characterization of the structure is performed with transmission measurements by using circularly polarized light. We demonstrate that our helix array is an optically active material in the visible domain: the transmission depends on the handedness of the circularly polarized light. The results are also supported with numerical calculations. In Chapter 6 we load the gap of plasmonic split-wire gold nanoantennas with the local deposition feature of EBID. The loading is established with silica deposition. The gap eld of the nanoantennas are loaded with various amount of silica. The optical properties of the loaded antennas are investigated with CL spectroscopy. The results reveal that the gap loading shifts the antenna resonance towards longer wavelengths as a function of the amount of deposited silica. Summarizing, light-matter interaction related studies beyond the classical limits of the optics (nanophotonics) is a broad eld. Both fundamental and applied nanophotonics investigations require state-of-the-art nanostructures with various geometries and material properties to push the boundaries. The work in this thesis demonstrates that EBID is an attractive nanofabrication technique to produce nanostructures that are three-dimensional, tunable (active or passive), with di erent materials, on di erent types of surface.
Benzer Tezler
- Development of nanostencil lithography and its applications for plasmonics and vibrational biospectroscopy
Nanoşablon litografisinin geliştirilmesi ve plazmonik yapılar ile titreşimli biospektroskopi uygulamaları
SERAP AKSU RAMAZANOĞLU
Doktora
İngilizce
2013
Fizik ve Fizik MühendisliğiBoston UniversityMalzeme Bilimi ve Nanomühendislik Ana Bilim Dalı
PROF. DR. HATİCE ALTUG
- Design and fabrication of resonant nanoantennas on chalcogenide glasses for nonlinear photonic applications
Doğrusal olmayan fotonik uygulamalar için kalkojen camlar üzerinde rezonant nanoanten tasarımı ve üretimi
HÜSEYİN DUMAN
Yüksek Lisans
İngilizce
2013
Fizik ve Fizik Mühendisliğiİhsan Doğramacı Bilkent ÜniversitesiMalzeme Bilimi ve Nanoteknoloji Ana Bilim Dalı
DOÇ. DR. MEHMET BAYINDIR
- Biyosensör uygulamaları için fraktal geometrili plazmonik nanoanten dizileri tasarım ve üretimi
Design and fabrication of fractal shaped plasmonic nanoantenna arrays for biosensing applications
EKİN ASLAN
Doktora
Türkçe
2017
Elektrik ve Elektronik MühendisliğiErciyes ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. MUSTAFA TÜRKMEN
- Yüzeyde güçlendirilmiş spektroskopi uygulamaları için plazmonik nanoanten tabanlı fotonik metamalzemelerin tasarımı, üretimi ve karakterizasyonu
Design, fabrication and characterization of plasmonic nanoantenna based photonic metamaterials for surface enhanced spectroscopy applications
ERDEM ASLAN
Doktora
Türkçe
2017
Mühendislik BilimleriErciyes ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. ÖMER GALİP SARAÇOĞLU
- Plasmonic stripe waveguide coupler with integrated wavelength division multiplexer
Dalga boyu çözücü ile tümleşik plazmonik dalga kılavuzu kip eşleştirici
ONGUN ARISEV
Yüksek Lisans
İngilizce
2017
Elektrik ve Elektronik MühendisliğiKoç ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. ŞÜKRÜ EKİN KOCABAŞ