Geri Dön

Heat dissipation bounds for nanocomputing: Methodology and applications

Başlık çevirisi mevcut değil.

  1. Tez No: 401221
  2. Yazar: İLKE ERCAN
  3. Danışmanlar: PROF. NEAL G. ANDERSON
  4. Tez Türü: Doktora
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2014
  8. Dil: İngilizce
  9. Üniversite: University of Massachusetts Amherst
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 160

Özet

Özet yok.

Özet (Çeviri)

Heat dissipation is a critical challenge facing the realization of emerging nanocomputing technologies. There are di erent components of this dissipation, and a part of it comes from the unavoidable cost of implementing logically irreversible operations. This stems from the fact that information is physical and manipulating it irreversibly requires energy. The unavoidable dissipative cost of losing information irreversibly xes the fundamental limit on the minimum energy cost for computational strategies that utilize ubiquitous irreversible information processing. A relation between the amount of irreversible information loss in a circuit and the associated energy dissipation was formulated by Landauer's Principle in a technologyindependent form. In a computing circuit, in addition to the information-theoretic dissipation, other physical processes that take place in association with irreversible information loss may also have an unavoidable thermodynamic cost that originates from the structure and operation of the circuit. In conventional CMOS circuits such unavoidable costs constitute only a minute fraction of the total power budget, however, in nanocircuits, it may be of critical signi cance due to the high density and operation speeds required. The lower bounds on energy, when obtained by considering the irreversible information cost as well as unavoidable costs associated with the operation of the underlying computing paradigm, may provide insight into the fundamental limitations of emerging technologies. This motivates us to study the problem of determining heat dissipation of computation in a way that reveals fundamental lower bounds on the energy cost for circuits realized in new computing paradigms. In this work, we propose a physical-information-theoretic methodology that enables us to obtain such bounds for the minimum energy requirements of computation for concrete circuits realized within speci c paradigms, and illustrate its application via prominent nanacomputing proposals. We begin by introducing the unavoidable heat dissipation problem and emphasize the signi cance of limitations it imposes on emerging technologies. We present the methodology developed to obtain the lower bounds on the unavoidable dissipation cost of computation for nanoelectronic circuits. We demonstrate our methodology via its application to various non-transistor-based (e.g. QCA) and transistor-based (e.g. NASIC) nanocomputing circuits. We also employ two CMOS circuits, in order to provide further insight into the application of our methodology by using this well-known conventional paradigm. We expand our methodology to modularize the dissipation analysis for QCA and NASIC paradigms, and discuss prospects for automation. We also revisit key concepts in thermodynamics of computation by focusing on the criticisms raised against the validity of Landauer's Principle. We address these arguments and discuss their implications for our methodology. We conclude by elaborating possible directions towards which this work can be expanded.

Benzer Tezler

  1. Deprem etkisindeki yapıların aktif kontrolü

    Active control of structures under seismic excitation

    BEKİR BORA GÖZÜKIZIL

    Yüksek Lisans

    Türkçe

    Türkçe

    2000

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    DOÇ.DR. NECMETTİN GÜNDÜZ

  2. Immersion cooling of suspended and coated nano-phosphor particles for extending the limits of optical extraction of light emitting diodes

    Işık yayan diotların (LED) optik ışınmalarındaki engellerin azaltılması ve optik verimin artırılması için askılı ve kaplamalı nano-fosfor parçacıklı yeni kaplama ve sıvı soğutma tekniklerinin kıyaslanması

    ENES TAMDOĞAN

    Doktora

    İngilizce

    İngilizce

    2017

    Makine MühendisliğiÖzyeğin Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET ARIK

  3. Reducing processor-memory performance gap and improving network-on-chip throughput

    İşlemci-bellek performans farkını azaltmak ve yonga-üstü-ağ verimini artırmak

    MUSTAFA NAVEED UL

    Doktora

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ÖZCAN ÖZTÜRK

  4. Quantifying the ignition delay of single wall carbon nanotube emulsified marine fuel oil influencing the combustion and diesel engine efficiencies

    Tek duvarlı karbon nanotüp ile emülsifiye edilmiş dizel yakıtı tutuşma gecikmesinin yanma ve dizel makinesi verimleri üzerine olan etkisinin değerlendirilmesi

    TOLUNAY KAYAARASI

    Doktora

    İngilizce

    İngilizce

    2021

    DenizcilikPiri Reis Üniversitesi

    Deniz Ulaştırma İşletme Mühendisliği Ana Bilim Dalı

    PROF. DR. SÜLEYMAN ÖZKAYNAK

  5. Mikrodalga ile ısıtmada ısı ve nem transferinin incelenmesi

    Investigation of heat and moisture transport with microwave heating

    ENVER TOLGA ARTAN

    Doktora

    Türkçe

    Türkçe

    2003

    Elektrik ve Elektronik Mühendisliğiİstanbul Üniversitesi

    Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. A. FAHRİ BURŞUK