Bayesian networks for evidence based clinical decision support
Başlık çevirisi mevcut değil.
- Tez No: 401334
- Danışmanlar: DR. WILLIAM MARSH
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2013
- Dil: İngilizce
- Üniversite: Queen Mary University of London
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 219
Özet
Özet yok.
Özet (Çeviri)
Evidence based medicine (EBM) is defined as the use of best available evidence for decision making, and it has been the predominant paradigm in clinical decision making for the last 20 years. EBM requires evidence from multiple sources to be combined, as published results may not be directly applicable to individual patients. For example, randomised controlled trials (RCT) often exclude patients with comorbidities, so a clinician has to combine the results of the RCT with evidence about comorbidities using his clinical knowledge of how disease, treatment and comorbidities interact with each other. Bayesian networks (BN) are well suited for assisting clinicians making evidence-based decisions as they can combine knowledge, data and other sources of evidence. The graphical structure of BN is suitable for representing knowledge about the mechanisms linking diseases, treatments and comorbidities and the strength of relations in this structure can be learned from data and published results. However, there is still a lack of techniques that systematically use knowledge, data and published results together to build BNs. This thesis advances techniques for using knowledge, data and published results to develop and refine BNs for assisting clinical decision-making. In particular, the thesis presents four novel contributions. First, it proposes a method of combining knowledge and data to build BNs that reason in a way that is consistent with knowledge and data by allowing the BN model to include variables that cannot be measured directly. Second, it proposes techniques to build BNs that provide decision support by combining the evidence from meta-analysis of published studies with clinical knowledge and data. Third, it presents an evidence framework that supplements clinical BNs by representing the description and source of medical evidence supporting each element of a BN. Fourth, it proposes a knowledge engineering method for abstracting a BN structure by showing how each abstraction operation changes knowledge encoded in the structure. These novel techniques are illustrated by a clinical case-study in trauma-care. The aim of the case-study is to provide decision support in treatment of mangled extremities by using clinical expertise, data and published evidence about the subject. The case study is done in collaboration with the trauma unit of the Royal London Hospital.
Benzer Tezler
- SJS ve ten sendromlu çocuklarda tedavi yöntemlerinin hastanede kalış süresi üzerine etkisinin bayesci ağ meta analizi ile araştırılması
Investigation of the effect of treatment methods on lenght of stay hospital in children with SJS and ten syndrome by bayesci network meta analysis
SAHURE ÖZERTÜRK
Yüksek Lisans
Türkçe
2022
BiyoistatistikMersin ÜniversitesiBiyoistatistik ve Tıbbi Bilişim Ana Bilim Dalı
DOÇ. DR. DİDEM DERİCİ YILDIRIM
- Integration of Bayesian networks with dematel for causal risk analysis: A supplier selection case study in automotive industry
Sebepsel risk analizi için bütünleşik Bayes ağları ve dematel yöntemi: Otomotiv endüstrisinde tedarikçi seçimi vaka çalışması
RUKİYE KAYA
Yüksek Lisans
İngilizce
2017
Endüstri ve Endüstri MühendisliğiHacettepe ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. BARBAROS YET
- Development of an intelligent tutoring system using bayesian networks and fuzzy logic
Bayesyan ağları ve bulanık mantık kullanılarak zeki öğretim sistemi geliştirimi
AFAF MUFTAH ADABASHI
Doktora
İngilizce
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAtılım ÜniversitesiYazılım Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MELTEM ERYILMAZ
PROF. DR. ALİ YAZICI
- Tedarik zinciri risk yönetimi modellemesi: Bayes ağları yaklaşımı ve akaryakıt dağıtım sektöründe bir uygulama
Supply chain risk management modelling: Bayes networks approach and an application in the fuel distribution sector
SERDAR SEMİH COŞKUN
- Towards adaptive brain-computer interfaces: Statistical inference for mental state recognition
Uyarlanabilir beyin-bilgisayar arayüzlerine doğru: Zihinsel durum tanıma için istatistiksel çıkarım
MASTANEH TORKAMANI AZAR
Doktora
İngilizce
2020
BiyomühendislikSabancı ÜniversitesiElektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. MÜJDAT ÇETİN
Prof. Dr. SELİM SAFFET BALCISOY