Blow-up and global similarity solutions for semilinear third-order dispersive PDEs
Başlık çevirisi mevcut değil.
- Tez No: 402010
- Danışmanlar: PROF. C. J. BUDD, PROF. V. A. GALAKTIONOV
- Tez Türü: Doktora
- Konular: Matematik, Mathematics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2015
- Dil: İngilizce
- Üniversite: University of Bath
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 151
Özet
Özet yok.
Özet (Çeviri)
Blow-up and global self-similar solutions of the semilinear dispersion equation ut = uxxx + μ(|u|p−1u)xx in R × R+, p > 1, with sufficiently good initial data u(x, 0) = u0(x) in R, for μ = ±1, are studied. This equation represents a kind of shallow water model, where, unlike the classical KdV and mKdV equations, the leading nonlinear operator is of the second order, meaning unstable, stable, and“semi-stable”(e.g., for the term ±(u2)xx). Actually, such an approximation implies that second-order diffusion-like (or forward and backward“porous medium operators”) play a leading and key role in contrast to more standard first-order ones. There are various numerical and analytical challenges in order to observe admissible profiles due to the highly oscillatory nature of the problem, in contrast to parabolic equations. The classification of the solutions governed by self-similarity is given in terms of the initial data, p and μ, where the numerical experiments play a key role. A reliable numerical algorithm for large step sizes, called an exponentially fitted Runge–Kutta (EFRK) method, is proposed for the corresponding second-order ODE of the first critical exponent p = p0 = 2 and the second Painlev´e equation related to the KdV equation. Lastly, single-point blow-up similarity solutions for nonlinear extension of the problem, ut = (|u|nu)xxx ± (|u|p−1u)xx in R × R+, n > 0 and p > n + 1, is very briefly studied. Although the studies on nonlinear dispersion equations have been popular in the mathematical literature for at least the last fifty years, these third-order equations were not investigated in the literature in the sense of self-similarity.
Benzer Tezler
- Lineer olmayan hiperbolik denklemlerin global çözümlerinin olmaması hakkında
Nonexistence of global solutions of nonlinear hyperbolic equations
GÜLAY SEÇİM
Doktora
Türkçe
1999
MatematikMimar Sinan Güzel Sanatlar ÜniversitesiMatematik Ana Bilim Dalı
PROF.DR. GÜLSEREN AYDIN
- Blow-up theorems for nonlinear evolutionary PDE's
Dogrusal olmayan evrimsel kısmi diferansiyel denklemler icin patlama teoremleri
BİLGESU ARİF BİLGİN
Yüksek Lisans
İngilizce
2010
MatematikKoç ÜniversitesiMatematik Ana Bilim Dalı
PROF. DR. VARGA KALANTAROV
- Belli bazı dalga oluşturucu denklemlerin yerel olmayan çözümleri ve çözümlerin patlaması
The global solutions and blow up solutions of the certain riser problems
AYTEKİN BİLİCİ
- Doğrusal olmayan evolüsyon denklemlerin çözümlerinin azalması ve patlaması
Decay and blow up of solutions of nonlinear evolution equations
ERHAN PİŞKİN
- Belirli bazı lineer olmayan dalga denklemlerinin yerel olmayan çözümleri ve çözümlerin sonlu zamanda
The global solutions of certain nonlinear wave equation and blow-up of the solutions in finite time
SAGHAR NABDEL