Geri Dön

Solving airline overbooking problems using fuzzy knowledge-based optimisation

Başlık çevirisi mevcut değil.

  1. Tez No: 403268
  2. Yazar: BERKCAN UYAN
  3. Danışmanlar: Dr. AMMAR AL-BAZI
  4. Tez Türü: Yüksek Lisans
  5. Konular: Ulaşım, Yönetim Bilişim Sistemleri, Transportation, Management Information Systems
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: İngilizce
  9. Üniversite: Coventry University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 105

Özet

Özet yok.

Özet (Çeviri)

Airline industry is a very delicate industry where the profit margins are very low. Over the years of civil aviation the average profit margin is listed as less than %1. Therefore, it is essential to cut costs and increase revenue wherever is possible. To increase revenue, revenue management is used in airline industry to maximise the profit. In revenue management, the element of control system includes any operation that involves controlling the factors of offered product. One of the factors controlled is the overbooking concept. This concept is selling tickets over the offered capacity to increase capacity utilisation in case of no-show probability of ticketed passengers. There are, however, many risks involved when implementing an overbooking strategy. If the number of passengers show up for the flight exceeds the number of seats offered, the airline has to deny number of oversold tickets and they have to compensate the denied passengers, decreasing the profit. Under the unknown probability of number of passengers showing up for the flight, it is important to balance the number of overbookings that will be allowed based on several factors. It has been noted that most of the previous works used estimation or random probability on deciding the number no-show passengers which are solved through mathematical programs. This is impractical as in most cases as there is no defined/known probabilistic behaviour that could model most of the aspect of oversold tickets problems and additional limitations or preferences are neglected. The aim of this research is to solve number of overbooking problems in the airline industry for the best forecasting of the overbooking limit based on an expert system. This leads to a more satisfactory results per single-leg flight through robust decision support system on airline overbooking limit based on the expert preferences or constraints. The successful completion of this project will assist in improving the decision support system when deciding whether to overbook a particular flight or if overbook is allowed how many overbooks are optimal based on the preference of the airline.

Benzer Tezler

  1. İstanbul Atatürk Havalimanı kapasitesi bağlamında üçüncü pistin değerlendirilmesi

    Third runway system capacity assesssment of İstanbul Atatürk Airport

    MİNE UYGUR

    Yüksek Lisans

    Türkçe

    Türkçe

    2002

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. GÜNGÖR EVREN

  2. Machine learning-based feature selection approach for no-show rate prediction: A case of aviation industry

    Makine öğrenimi tabanlı özellik seçim yaklaşımıyla no-show oranı tahmini: Havacılık sektörü üzerine bir vaka analizi

    AHMET SÜHA HANCIOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Endüstri ve Endüstri MühendisliğiAnkara Yıldırım Beyazıt Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. İBRAHİM YILMAZ

  3. New capacity allocation policies in revenue management

    Gelir yönetiminde yeni kapasite dağıtım politikaları

    NURŞEN AYDIN

    Doktora

    İngilizce

    İngilizce

    2014

    Endüstri ve Endüstri MühendisliğiSabancı Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    PROF. DR. ŞEVKET İLKER BİRBİL

  4. Solving aircraft routing problem with integer programming

    Tamsayı programlama ile uçak rotalama probleminin çözülmesi

    NAHİT KİRAZOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2009

    Endüstri ve Endüstri MühendisliğiBahçeşehir Üniversitesi

    Endüstri Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. F. TUNÇ BOZBURA

  5. Speeding up branch and bound algorithm for airline Crew scheduling problem by using machine learning techniques

    Makine öğrenme teknikleri kullanarak Crew programlama sorunu için şube ve sınava algoritmasının hızlanması

    LEILA GHASEMZADEH

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Havacılık Mühendisliğiİstanbul Teknik Üniversitesi

    Uçak ve Uzay Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ NAZIM KEMAL ÜRE