Solving airline overbooking problems using fuzzy knowledge-based optimisation
Başlık çevirisi mevcut değil.
- Tez No: 403268
- Danışmanlar: Dr. AMMAR AL-BAZI
- Tez Türü: Yüksek Lisans
- Konular: Ulaşım, Yönetim Bilişim Sistemleri, Transportation, Management Information Systems
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2015
- Dil: İngilizce
- Üniversite: Coventry University
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 105
Özet
Özet yok.
Özet (Çeviri)
Airline industry is a very delicate industry where the profit margins are very low. Over the years of civil aviation the average profit margin is listed as less than %1. Therefore, it is essential to cut costs and increase revenue wherever is possible. To increase revenue, revenue management is used in airline industry to maximise the profit. In revenue management, the element of control system includes any operation that involves controlling the factors of offered product. One of the factors controlled is the overbooking concept. This concept is selling tickets over the offered capacity to increase capacity utilisation in case of no-show probability of ticketed passengers. There are, however, many risks involved when implementing an overbooking strategy. If the number of passengers show up for the flight exceeds the number of seats offered, the airline has to deny number of oversold tickets and they have to compensate the denied passengers, decreasing the profit. Under the unknown probability of number of passengers showing up for the flight, it is important to balance the number of overbookings that will be allowed based on several factors. It has been noted that most of the previous works used estimation or random probability on deciding the number no-show passengers which are solved through mathematical programs. This is impractical as in most cases as there is no defined/known probabilistic behaviour that could model most of the aspect of oversold tickets problems and additional limitations or preferences are neglected. The aim of this research is to solve number of overbooking problems in the airline industry for the best forecasting of the overbooking limit based on an expert system. This leads to a more satisfactory results per single-leg flight through robust decision support system on airline overbooking limit based on the expert preferences or constraints. The successful completion of this project will assist in improving the decision support system when deciding whether to overbook a particular flight or if overbook is allowed how many overbooks are optimal based on the preference of the airline.
Benzer Tezler
- İstanbul Atatürk Havalimanı kapasitesi bağlamında üçüncü pistin değerlendirilmesi
Third runway system capacity assesssment of İstanbul Atatürk Airport
MİNE UYGUR
Yüksek Lisans
Türkçe
2002
İnşaat Mühendisliğiİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. GÜNGÖR EVREN
- Machine learning-based feature selection approach for no-show rate prediction: A case of aviation industry
Makine öğrenimi tabanlı özellik seçim yaklaşımıyla no-show oranı tahmini: Havacılık sektörü üzerine bir vaka analizi
AHMET SÜHA HANCIOĞLU
Yüksek Lisans
İngilizce
2024
Endüstri ve Endüstri MühendisliğiAnkara Yıldırım Beyazıt ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. İBRAHİM YILMAZ
- New capacity allocation policies in revenue management
Gelir yönetiminde yeni kapasite dağıtım politikaları
NURŞEN AYDIN
Doktora
İngilizce
2014
Endüstri ve Endüstri MühendisliğiSabancı ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. ŞEVKET İLKER BİRBİL
- Solving aircraft routing problem with integer programming
Tamsayı programlama ile uçak rotalama probleminin çözülmesi
NAHİT KİRAZOĞLU
Yüksek Lisans
İngilizce
2009
Endüstri ve Endüstri MühendisliğiBahçeşehir ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. F. TUNÇ BOZBURA
- Speeding up branch and bound algorithm for airline Crew scheduling problem by using machine learning techniques
Makine öğrenme teknikleri kullanarak Crew programlama sorunu için şube ve sınava algoritmasının hızlanması
LEILA GHASEMZADEH
Yüksek Lisans
İngilizce
2019
Havacılık Mühendisliğiİstanbul Teknik ÜniversitesiUçak ve Uzay Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ NAZIM KEMAL ÜRE