İstanbul Atatürk Havalimanı kapasitesi bağlamında üçüncü pistin değerlendirilmesi
Third runway system capacity assesssment of İstanbul Atatürk Airport
- Tez No: 126729
- Danışmanlar: PROF. DR. GÜNGÖR EVREN
- Tez Türü: Yüksek Lisans
- Konular: İnşaat Mühendisliği, Civil Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2002
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İnşaat Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Ulaştırma Mühendisliği Bilim Dalı
- Sayfa Sayısı: 104
Özet
İSTANBUL ATATÜRK HAVALİMANI KAPASİTE BAĞLAMINDA ÜÇÜNCÜ PİSTİN DEĞERLENDİRİLMESİ ÖZET Havaalanlarının projelendirilme aşamasında ve dikkate alman bir havaalanının performansının değerlendirilmesinde kullanılan kriterlerden birisi gecikme süresidir. Gecikme, sadece havaalanı tasarımından kaynaklandığı gibi, talepteki değişime, hava koşullarına ve çevre faktörlerine bağlı olarak değişim göstermektedir. Tez çalışmamda, İstanbul Atatürk Havalimanının işletmesi ve talebe yeterliliği bağlanımda pistlerin(06/24 ve 18L/36R) ve özellikle halen yapılmakta olan üçüncü yeni paralel pistin(18R/36L) kapasite ve gecikme hesapları ile ve bu pistlerin hepsinin birlikte çalışması halinde kapasiteye katkısınının ne olacağı konusu üzerinde çalışılmıştır. Bu çalışma 7 bölümden oluşmakta ve bu bölümlerin içeriği kısaca şu şekildedir: Birinci bölümde, havaalanlarında kapasite kavramı hakkında bilgi verilmekte ve hava trafik sistemindeki kapasiteden bahsedilmektedir. Hava trafik sistemi, hava sahalarında ve havaalanlarındaki uçaklara kontrol hizmeti vermek amacıyla tesis edilmiş, elemanlar, hava sahası, teknik donanım, uçak ve insan gücü olan bir sistemdir. Bu bölümde bu sistemin kapasitesini kısıtlayan faktörler, ayrıca saatlik kapasiteyi etkileyen faktörler ve kapasite yönetimi anlatılmıştır. ikinci bölümde, Hava trafik tıkanıklığı, günümüz ve yakın geleceğin hava trafik yönetiminin ana problemidir. Hava trafik tıkanıklığı; uçuşların kalkışından önceki gecikmeleri, uçuştaki beklemeleri, uçuştaki emniyetsizlikleri, ekonomik olmayan uçuş seviyelerinin kullanımı, yörünge değişiklikleri, uçuş planlarının ve filo planlamasının bozulması, uçak işleticisini ekonomik ve yakıt yönünden zorlaması, hava meydanları ve terminal binalarındaki tıkanıklık ve müşteri tatminsizliği ile sonuçlandığı ve oluşan tıkanıklık probleminin bu türevlerinin çözümü için, karar destek yardımcısı olarak da kullanılabilecek, çarpışmaların önlenmesi ve ekonomik akışı amaçlayan bir model ve çözüm algoritmaları sunulmuştur. Üçüncü bölümde, İstanbul Atatürk Havalimanı hakkında genel bilgilerden ve son yıllara ait yolcu, uçak ve yük trafiklerinden bahsedilmiştir. Ayrıca mevcut duruma ilişkin istatistiksel bilgilerde bu bölümde yer almaktadır. Dördüncü bölümde, İstanbul Atatürk Havalimanı üçüncü pistinin kapasiteye katkısı çeşitli analitik yaklaşımlar yardımıyla değerlendirilmiştir. Bu yöntemler kuyruk teorisi ve analitik yaklaşımlar şeklindedir. Kuyruk teorisi ile Atatürk Havalimanında oluşan gecikmeler, analitik yaklaşımlar yardımı ile de doyma kapasitesi hesaplanmıştır. Beşinci bölümde, Atatürk Havalimanında yeni yapılan üçüncü pistin rolü hakkında bilgiler verilmiştir. Yeni yapılan paralel pistin havaalanına kapasite açısından neler katacağı, şuandaki pistlerin mevcut durumu ve çeşitli pist kullanım durumlarına (mevcut şartlara) göre değerlendirmelerinden bahsedilmiştir, ve üç pistin mevcut kullanımı halinde oluşan kapasite hakkında bilgiler yer almaktadır.Altıncı bölümde, Atatürk Havalimanında yeni piste ilişkin ve buna bağlı oluşan diğer gelişmeler hakkında değerlendirmeler anlatılmıştır. Yeni yapılan uluslar arası terminalden sonra havaalanında ileriye dönük oluşan terminal kapasitelerinden, iç hat ile dış hatlar teımmallerinin birlikte değerlendirilmelerinden bahsedilmiştir, ve piste ilişkin ihtiyaç değerleri verilmiştir. Yedinci ve son bölümde, Atatürk Havalimanında yaşanan darboğazlar sonucunda yeni yapılan üçüncü pistin ne derece bu darboğazları azaltacağından ve yine bu yeni pist ile birlikte havalimanındaki kapasitenin artışı hakkında değerlendirmeler yapılmıştır. xı
Özet (Çeviri)
THIRD RUNWAY SYSTEM CAPACITY ASSESSMENT OF ISTANBUL ATATÜRK AIRPORT SUMMARY In air transportation, particular concern is focused upon the movement of aircraft, passengers, ground access vehicles, and cargo through both the airport and the aviation system. The experienced air traveler has grown accustomed to delayed flights, overbooking, missed connections, ground congestion, parking shortages, and long lines in the terminal building during peak travel periods. For many air transportation trips, the relative advantage of the speed characteristics of aircraft is considerably diminished by ground access, terminal system, and airside delays. Information on airport capacity and delay is important to the airport planner. There is a strong blief within the aviation comunity that significant gains in air transportation efficiency can be realized through an understanding of the factors causing delays and by the application of technological innovation to alleviate delay. The term capacity means the processing capability of a service facility over some period. However, for a service facility to realize its maximum or ultimate capacity, there must be a continuous demand for service. In aviation, it is virtually impossible to have a continuous demand throughout the operating period of the system. Even if a continuous demand were artificially created by causing a backlog at the service facilities by limiting operating periods or providing reduced operating staff, the delays at these facilities would result in such a deterioration in service quality as to make the situation undesirable. The design specifications at an airport require that sufficient capacity be provided that a relatively high percentage of the demand will be subjected to some minimal amount of delay. To provide sufficient capacity to service a varying demand without delay will normally require facilities that are difficult to justify economically. Although capacity is an important measure of the effectiveness of an airport, it should not be used as the sole criterion. In preliminary planning, several alternative airfield configurations are usually considered. Capacity estimates are useful for the initial screening of alternatives and for selecting those alternatives which should be subject to further analysis. When demand approaches capacity, delays to aircraft build up very rapidly. A primary objective of capacity and delay studies is to determine effective and efficient means to increase capacity and to reduce delay at airports. In practice, analyses are conducted to examine the implications of the changes in the nature of the demand, operating configurations of the airfield, and impact of facility modifications on the quality of service afforded this demand. Some of the typical applications of these analyses might include ; xu1) The effect of alternative runway exit locations and geometry on runway system capacity 2) The impact of airfield restrictions due to noise abatement procedures, limited runway capacity, or inadequate airport navigational aids on aircraft processing rates 3) The consequences of introducing heavy aircraft into the aircraft mix at an airport, and an examination of alternative mechanisms for servicing the mix 4) The investigation of alternative runway use configurations on the ability to process aircraft 5) The generation of alternatives for new runway or taxiway construction to facilitate aircraft processing 6) The gains which might be realized in system capacity or in delay reduction by the diversion of general aviation aircraft to reliever facilities in large air traffic hub areas. Capacity and delay have been evaluated by the use of analytical and computer simulation model. The focus first is on analytical models, often referred to as mathematical models. Mathematical models of airport operations are tools for understanding the important parameters that influence the operation of particular interest. Depending upon the complexity of the system, a large number of conditions may be studied, perhaps more cheaply and quickly than by other methods. Computer simulation models are extremely useful for studying complex systems which cannot be represented by equations. These have been used successfully for solving many problems in air transport including airport planning. An important point to remember is that the prime justification for using computer simulation is to reduce the differences between the real world and the abstract world of the model. For airport plarining, the airfield capacity has been defined in two ways. One definition has been used extensively in the United States in the past : Capacity is the number of aircraft operations during a specified time corresponding to a tolerable level of average delay. This is referred to as practical capacity. Another definition is gaining favor: Capacity is the maximum number of aircraft operations that an airfield can accommodate during a specified time when there is a continuous demand for service. This definition has been referred to in several ways, ultimate capacity, saturation capacity and maximum throughput rate. An important difference in these two measures of capacity is that one is defined in terms of delay and the other is not. The definition of ultimate capacity does not include delay and reflects the capability of the airfield to accommodate aircraft during peak periods of activity. However, for this definition one does not have an explicit measure of the magnitude of congestion and delay. Many factors influence the capacity of an airfield, and some are more significant than others. In general, the capacity depends on the configuration of the airfield, environment in which aircraft operate, availability and sophistication of aids to navigation, and air traffic control facilities and procedures. xinThe most important factors that affect hourly capacity are the following : 1) The configuration, number, spacing and orientation of the runway system 2) The configuration, number and location of taxiways and runway exits 3) The arrangement, size and number of gates in the apron area 4) The runway occupancy time for arriving and departing aircraft 5) The size and mix of aircraft using the facilities 6) Weather, particularly visibility and ceiling, since air traffic rules in good weather are different from those in poor weather 7) Wind conditions which may preclude the use of all available runways by all aircraft 8) Noise abatement procedures which may limit the type and timing of operations on available runways 9) Within the constraints of wind and noise abatement, the strategy which the controllers choose to operate the runway system 10) The number of arrivals relative to the number of departures 1 1) The number and frequency of touch - and - go operations by general aviation aircraft 12) The existence and frequency of wake vortices which require greater separations when a light aircraft follows a heavy aircraft than when a heavy follows a light 13) The existence and nature of navigational aids 14) The availability and structure of airspace for establishing arrival and departure routes 15) The nature and extent of the air traffic control facilities Air traffic system is a services production field that consists of airspace, technical equipment, aircraft and work force. Air traffic system provides control services for movements of aircraft in airspace and aerodromes. Air traffic management provides these services for efficiency, economy and safety of the flights. Main purpose of the flow management is to meet air traffic demand. Rewiew of short, medium and long term air traffic capacity plans is vital for meeting traffic demand that fluctuates. Air traffic congestion is the major problem of today's and near future's air traffic management. Air traffic congestion results in delays of flights prior to departure ; in - flight holding ; unsafe flights ; use of uneconomic flight levels ; re - routings and diversions ; disruptions of flight schedules and fleet utilization ; economic and fuel penalties for aircraft operators ; congestion on aerodromes or in terminal buildings ; and passenger dissatisfaction. Istanbul - Atatürk airport accommodates between 500 and 600 movements a day, including more than 70% medium - jets. A peak of 857 movements was experienced in 2000. some 171.174 movements were accommodated in 2000, including both IFR and VFR. xivThe traffic is composed of about 60 - 70% Turkish Airline, 20% from ex - URSS airlines, 10 - 15% other European Airlines, and 5% GA. Istanbul - Atatürk airport is equipped with two converging runways 06 / 24 and 18L / 36R. Runway 06 / 24 is 2300 m. long, 60 m. wide, and is CAT I - equipped, while RWY 18L / 36R is 3000 meters long, 45 m. wide and CAT II - equipped, although RWY 18L is operated in CAT I only because of obstacle clearance on final approach. Based on statistics in 2000, configuration a06/d36 (arrivals on RWY 06 and departures on RWY 36) was used 60% of the time, the remaining 40% being on configuration a24/dl8. A 3rd runway has been constructed in parallel to RWY 18L / 36R. Runways 18L / 36R and 18R / 36L are separated by 215 meters and not staggered. Baseline Scenarios ; a) IST2001 - a24 / dl8L (converging sceanario) : South - west wind, dependent segregated operations consisting in arrivals on RWY 24 and departures on RWY 18L, based on current infrastructure, current operational practices and procedures, including separations between aircraft, current SIDs and STARs. This currently represents 40% of operations. However, this configuration can be critical when departing pilots on RWY 18L see aircraft vacating RWY 24 through exit S in the heading of departing runway. b) IST2001 - a06 / d36R (diverging scenario) : North - east wind, independent runway operations consisting in arrivals on RWY 06 and departures on RWY 36R, based on current infrastructure, current operational practices and procedures, including separations between aircraft, current SIDs and STARs. This currently represents 60% of operations. Tables Al and A2 show the runway capacity values for the two baseline scenarios IST2001 - a06 / d36R and IST2001 - a24 / dl8L. The operational window is relatively wide at Istanbul Airport, ranging from 17% to 33% dring departure peaks, and from 46% to 78% for arrival peaks. The capacity figures are reported in Table Al for the most representative arrival percentage of 32% and 65% for departure and arrival peaks respectively. In these conditions, the capacity is expected to range from 64 aircraft operations per hour during a departure peak to 39 aircraft per hour during inbound traffic peak. Al. Capacity Assessment Results for IST2001 - a06 / d36R baseline scenari xvWhen RWY 24 is use for arrivals while RWY 18L is used for departures (IST2001 - a24 / dl8L baseline scenario), the theoretical capacity envelope ranges from 46 departures and 24 arrivals per hour, as reported in Table A2. With reference to the operational window of the airport, the hourly capacity is 53 movements for outbound traffic peaks and 39 for inbound traffic peaks. A2. Capacity Assessment Results for IST2001 - a24 / dl8L baseline scenario. It is to be noted that, for both baseline scenarios, and especially for the scenario IST2001 - a06 / d36R, departure capacity is much higher than arrival capacity, making the system relativey unbalanced and unstable. Relatively high capacity deviation can indeed be observed depending on possible fluctuation of the percentage of inbound traffic demand with regards to total demand in the system. Arrival capacity should therefore be prioritised if any investment is performed in the scope of runway capacity increase. This document concerns, Istanbul - Atatürk airport, including its 3rd runway operations. It reports the runway capacity values which have been assessed based on a specific baseline scenario and estimated using the analytical runway system capacity model. This study shows that the runway ststem capacity for Istanbul - Atatürk airport is 64 movements per hour during outbound traffic peak and 39 movements per hour during inbound traffic peak when runway 06 is used for arrivals and runway 36R is used for departures (diverging configuration). In the converging configuration, arrivals on runway 24 and departures on runway 18L, the hourly capacity ranges from 53 movements in departure peak to 39 movements in arrival peak. xvi
Benzer Tezler
- İşlevi değişen terminal alanlarının kamu yararına kullanılması: atatürk havalimanı örneği
Functional transformation of terminal areas for public benefit: the case of attürk airport example
ZEYNEP NUR AYDEM
Yüksek Lisans
Türkçe
2024
Şehircilik ve Bölge PlanlamaYıldız Teknik ÜniversitesiŞehir ve Bölge Planlama Ana Bilim Dalı
PROF. DR. SENAY OĞUZTİMUR
- Atatürk Havalimanı nın güney hâkim yönlü rüzgârlar (lodos) altında kapasite modellemesi
Capacity modeling under the effects of southern winds at Istanbul Atatürk International Airport
KOREL İNANÇ DURMAZ
Yüksek Lisans
Türkçe
2013
Endüstri ve Endüstri MühendisliğiHava Harp Okulu KomutanlığıEndüstri Mühendisliği Ana Bilim Dalı
DR. UĞUR ZİYA YILDIRIM
- İstanbul Atatürk ve Sabiha Gökçen Hava Limanı'nın kapasite, talep değerlendirmesi
Capacity and demand evaluation of Istanbul Atatürk Airport and Sabiha Gökçen Airport
FATİH PEKCANATTI
Yüksek Lisans
Türkçe
2006
Ulaşımİstanbul Teknik Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. GÜNGÖR EVREN
- İstanbul Atatürk Havalimanının yeterliliğinin irdelenmesi
Başlık çevirisi yok
SALİH GÜZEL
Yüksek Lisans
Türkçe
1998
İnşaat Mühendisliğiİstanbul Teknik ÜniversitesiUlaştırma Ana Bilim Dalı
PROF. DR. GÜNGÖR EVREN
- Airport needs assessment for Istanbul
İstanbul havalmanı ihtiyaç analizi
MEHMET ERHAN İMAMOĞLU
Yüksek Lisans
İngilizce
2010
UlaşımBoğaziçi Üniversitesiİnşaat Mühendisliği Ana Bilim Dalı
PROF. DR. GÖKMEN ERGÜN