Geri Dön

Gamma spectroscopy by artificial neural network coupled with MCNP

Başlık çevirisi mevcut değil.

  1. Tez No: 403414
  2. Yazar: HÜSEYİN ŞAHİNER
  3. Danışmanlar: Dr. XIN LIU
  4. Tez Türü: Doktora
  5. Konular: Maden Mühendisliği ve Madencilik, Mining Engineering and Mining
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2017
  8. Dil: İngilizce
  9. Üniversite: Missouri University of Science and Technology (University of Missouri-Rolla)
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 93

Özet

Özet yok.

Özet (Çeviri)

While neutron activation analysis is widely used in many areas, sensitivity of the analysis depends on how the analysis is conducted. Even though the sensitivity of the techniques carries error, compared to chemical analysis, its range is in parts per million or sometimes billion. Due to this sensitivity, the use of neutron activation analysis becomes important when analyzing bio-samples. Artificial neural network is an attractive technique for complex systems. Although there are neural network applications on spectral analysis, training by simulated data to analyze experimental data has not been made. This study offers an improvement on spectral analysis and optimization on neural network for the purpose. The work considers five elements that are considered as trace elements for bio-samples. However, the system is not limited to five elements. The only limitation of the study comes from data library availability on MCNP. A perceptron network was employed to identify five elements from gamma spectra. In quantitative analysis, better results were obtained when the neural fitting tool in MATLAB was used. As a training function, Levenberg-Marquardt algorithm was used with 23 neurons in the hidden layer with 259 gamma spectra in the input. Because the interest of the study deals with five elements, five neurons representing peak counts of five isotopes in the input layer were used. Five output neurons revealed mass information of these elements from irradiated kidney stones. Results showing max error of 17.9% in APA, 24.9% in UA, 28.2% in COM, 27.9% in STRU type showed the success of neural network approach in analyzing gamma spectra. This high error was attributed to Zn that has a very long decay half-life compared to the other elements. The simulation and experiments were made under certain experimental setup (3 hours irradiation, 96 hours decay time, 8 hours counting time). Nevertheless, the approach is subject to be generalized for different setups.

Benzer Tezler

  1. Yapay sinir ağlarının gama spektrometrik ölçümlere uygulanması

    Application of artificial neural networks to gamma spectrometric measurements

    SELİN ERZİN

    Doktora

    Türkçe

    Türkçe

    2019

    Fizik ve Fizik MühendisliğiEge Üniversitesi

    Nükleer Bilimler Ana Bilim Dalı

    PROF. DR. GÜNSELİ YAPRAK

  2. Türkiye'de yetiştirilen farklı gıda ürünlerindeki radyoaktivite seviyelerinin gama spektroskopi sistemi ile ölçülmesi

    Measurement of radioactivity levels by gamma spectroscopy system in different food products grown in Turkey

    BERNA GÜNDOĞDU

    Yüksek Lisans

    Türkçe

    Türkçe

    2019

    Fizik ve Fizik Mühendisliğiİstanbul Üniversitesi

    Fizik Ana Bilim Dalı

    PROF. DR. LATİFE ŞAHİN YALÇIN

  3. Alfa ve gama spektroskopisi ile çevresel örneklerde radyoaktivite ölçümü ve analizi

    Measurement and analysis of radioactivity in environmental samples with alpha and gamma spectroscopy

    NURGÜL HAFIZOĞLU ALKAN

    Doktora

    Türkçe

    Türkçe

    2019

    Fizik ve Fizik Mühendisliğiİstanbul Üniversitesi

    Fizik Ana Bilim Dalı

    PROF. DR. LATİFE ŞAHİN YALÇIN

  4. Tire yöresi zeytinlerinde radyoaktivite ölçülmesi

    Başlık çevirisi yok

    MUSTAFA KAYA

    Yüksek Lisans

    Türkçe

    Türkçe

    1995

    Nükleer MühendislikEge Üniversitesi

    PROF.DR. H. MÜMTAZ KIZILYAYLI