Geri Dön

Çevresel ve operasyonel koşullara uyarlı mikro doppler veri işleme

Adaptive micro doppler data processing for environmental and operational conditions

  1. Tez No: 409925
  2. Yazar: BARIŞ EROL
  3. Danışmanlar: YRD. DOÇ. DR. SEVGİ ZÜBEYDE GÜRBÜZ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: Türkçe
  9. Üniversite: TOBB Ekonomi ve Teknoloji Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Elektrik Elektronik Bilim Dalı
  13. Sayfa Sayısı: 117

Özet

Radar gözetleme sistemlerindeki asıl zorluk insanların hayvanlardan ayrılması olduğu kadar farklı insan hareketlerinin ayrılmasını da kapsamaktadır. Bu nedenle hedef mikro-Doppler imzalarının otomatik hedef sınıflandırması için yüksek başarıma sahip olduğu gösterilse de sonuçlar operasyonel koşulların ideal olduğu durumlar ve belirli öznitelik kümeleri için verilmektedir. Geçmiş yıllarda çok sayıda öznitelik mikro-Doppler imzalarının sınıflandırılması için önerilmiştir. Ancak önerilen özniteliklerinin tümünün kullanılması maksimum sınıflandırma başarımının verilmesini garanti etmemekte ve ideal öznitelik alt kümesinin seçilmesi ise senaryoya bağımlı olarak değişmektedir. Bu çalışmada, kapsamlı olarak mikro-Doppler öznitelik çıkarım yöntemleri ve çıkartılan özniteliklerin radar sistem parametleri ve operasyonel koşullara – merkez frekansı, menzil ve Doppler çözünürlüğü, anten hedef geometrisi, sinyal gürültü oranı ve hedef üzerinde kalma süresi – olan bağımlılıklarını incelemektedir. İnsan mikro-Doppler imzalarına uyarlı bir öznitelik dizaynı gerçekleştirilmiştir. Sınıflandırma performansını en iyileştirecek, azaltılmış sayıda olan özniteliklerin çıkartılması için algoritmalar önerilmiş ve iyi seçilmiş bir öznitelik alt kümesinin daha iyi başarımlar ortaya konduğu gösterilmiştir. Durum çalışması yapılarak önerilen uyarlanabilir öznitelik seçim algoritmasının sınıflandırma performansını arttırılabileceği gösterilmiştir.

Özet (Çeviri)

A key challenge for radar survelliance systems is the discrimination of ground based targets, especially humans from animals, as well as different types of human activities. For this purpose, target micro-Doppler signatures have been shown to yield high automatic target classification rates; however, performance is typically only given for near-optimal operating conditions using a fixed set of features. Over the past decade a vast number of micro-Doppler features have been proposed for classification of radar micro-Doppler signatures. In fact utilization of all possible features does not guarantee maximum classification performance and the selection of an optimal subset of features is scenario dependent. In this work, a comprehensive survey of micro-Doppler features and their dependence upon system parameters and operational conditions – such as transmit frequency, range and Doppler resolution, antenna target geometry, signal to noise ratio, and dwell time – is given. A new feature design for human micro-Doppler signatures is proposed. Algorithms for optimizing classification performance for a reduced number of features are presented and it is shown that a well selected subset of robust features yields better results. Performance gains achievable using adaptive feature selection are assessed for a case study of interest.

Benzer Tezler

  1. Deniz taşımacılığında kuru yük gemilerinin yangın risklerinin araştırılması ve yangın güvenliği

    Investigation of fire risks and fire safety of dry cargo ships in marine transportation

    CEM ÖZKAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    DenizcilikSakarya Üniversitesi

    Yangın ve Yangın Güvenliği Anabilim Dalı

    DOÇ. DR. MURAT TUNA

  2. Data-driven anomaly detection for airspace security using ADS-B surveillance data

    ADS-B gözetim verisi ile hava sahası güvenliği için veri tabanlı anomali tespiti

    ABDULLAH ÇERKEZOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    Savunma ve Savunma Teknolojileriİstanbul Teknik Üniversitesi

    Savunma Teknolojileri Ana Bilim Dalı

    DOÇ. BARIŞ BAŞPINAR

  3. Aerial link orchestration

    Hava bağlantılarının düzenlenmesi

    BÜŞRA BAYRAM

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ GÖKHAN SEÇİNTİ

  4. Investigation of managed aquifer recharge site suitability through multi-tiered decision making approach

    Yönetilen akıfer besleme sahası uygunluğunun çok kriterli karar verme yaklaşımı ile incelenmesi

    RACHID MOHAMED MOUHOUMED

    Doktora

    İngilizce

    İngilizce

    2023

    İnşaat Mühendisliğiİstanbul Teknik Üniversitesi

    İnşaat Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET ÖZGER

  5. Türkiye kömür işletmleri afşin elbistan linyit işletmeleri yeraltı su seviyesinin otomasyon sistemi ile takibi

    Turkey coal enterprises afşin elbistan lignite in monitoring of underground water level with automation system

    SERHAT GEMİCİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2025

    Maden Mühendisliği ve MadencilikKonya Teknik Üniversitesi

    Maden Mühendisliği Ana Bilim Dalı

    DOÇ. DR. İBRAHİM ÇINAR