Geri Dön

Human movement recognition with dynamic movement primitives

Dinamik hareket birimleri ile insan hareketi tanıma

  1. Tez No: 409946
  2. Yazar: ALP BURAK PEHLİVAN
  3. Danışmanlar: DOÇ. DR. ERHAN ÖZTOP
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2015
  8. Dil: İngilizce
  9. Üniversite: Özyeğin Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Bilimleri Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 84

Özet

Dinamik Hareket Birimleri (DHB), ilk olarak hareket güzergahlarının üretilmesinde kullanılan bir yöntem olduğu halde hareket tanıma görevlerinde de kullanılmıştır. Fakat DHB'lerle yapılan tanıma ile diğer tanıma yöntemleri arasında sistematik bir karşılaştırma yapılmamıştır. Biz de faz değişkeninde eşit merkezlenmis Gaussian fonksiyonları kullandığımız DHB'lerde, boyutları değiştirilmiş ağırlık karşılaştırması ile hareket tanıma yöntemi gercekleştirdik. Ayrıca, bu tezde yaygın olarak kullanılan Saklı Markov Modeli (SMM) yöntemi ve DHB ile yapılan insan tarafından üretilmiş hareket güzergahları üzerinde tanıma işlemleri karşılaştırılmıştır. Bu iki yöntemin çalışma prensipleri çok farklı olduğu için, performansa ek olarak adapte edilebilir parametrelerin miktarı ve tanıma işleminin aldığı zaman karsılaştırılmıştır. Sonuçlar, DHB'nin insan hareketleri verisi üzerine gürültüsüz, gürültü eklenerek ve veriler azaltılarak yapılan testlerde SMM'den daha iyi sonuçlar verdiğini göstermektedir.

Özet (Çeviri)

Dynamic Movement Primitives (DMPs)-originally a method for movement trajectory generation has been also used for recognition tasks. However there has not been a systematic comparison between other recognition methods and DMPs using human movement data. We have implemented a movement recognition method based on DMPs with Gaussians centered equally spaced in phase variable and scaled one-nearest-neighbor weight comparison. Furthermore, in thesis, we presented a comparison of commonly used Hidden Markov Model (HMM) based recognition with our implementation of DMP based recognition using human generated letter trajectories. As the working principles of these two methods are very different, in addition to the performance, the numbers of adaptable parameters that are used in each method and, process time were compared. The results indicate that DMP gives better results than HMM in the tests with noiseless data, noisy data and derogated data with given human movement dataset.

Benzer Tezler

  1. Action recognition through action generation

    Hareket yaratma mekanizmalarıyla hareket tanıma

    BARIŞ AKGÜN

    Yüksek Lisans

    İngilizce

    İngilizce

    2010

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik Üniversitesi

    Bilgisayar Mühendisliği Bölümü

    YRD. DOÇ. DR. EROL ŞAHİN

  2. Vatandaşlık hakkı ve vatansızlık

    Right to have nationality and statelessness

    HATİCE BEYZA ÖZTÜRK

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    HukukGalatasaray Üniversitesi

    Milletlerarası Özel Hukuk Ana Bilim Dalı

    PROF. DR. SÜHEYLÂ BALKAR

  3. Doğadan esinli interaktif bina kabuğu tasarımı için örüntüye dayalı bir model

    A model for nature inspired interactive building envelope design based on pattern

    HÜLYA ORAL

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    Mimarlıkİstanbul Teknik Üniversitesi

    Bilişim Ana Bilim Dalı

    PROF. DR. GÜLEN ÇAĞDAŞ

  4. Hand gesture recognition for Turkish sign language using electromyography for human-robot interaction

    İnsan-robot etkileşimi için elektromyografi kullanarak Türk işaret dili için el hareketi tanıma

    MUSTAFA SEDDIQI

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HATİCE KÖSE

  5. Vision based handwritten character recognition

    Görüş tabanlı elyazısı harf tanınması

    ÖZCAN ÖKSÜZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2003

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİhsan Doğramacı Bilkent Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. UĞUR GÜDÜKBAY