Güç transformatörü hatalarının destek vektör makineleri yaklaşımıyla belirlenmesi
Fault diagnosis of power transformers with support vector machines
- Tez No: 410017
- Danışmanlar: YRD. DOÇ. DR. SELİM KÖROĞLU
- Tez Türü: Yüksek Lisans
- Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2015
- Dil: Türkçe
- Üniversite: Pamukkale Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 91
Özet
Tez çalışmasında, enerji sistemlerinin en önemli ve vazgeçilmez ekipmanlarından biri olan güç transformatörlerinde meydana gelen arızaların tanılanması ve sınıflandırılması destek vektör makineleri (DVM) ile gerçekleştirilmiştir. . Güç transformatörleri hatalarının erken teşhisinde sıklıkla kullanılan ve etkili bir yöntem olan yağda çözünmüş gaz analizi (YGA) yöntemi tanıtılmıştır. Bu yöntemle elde edilen YGA verileri geliştirilen DVM modeli ile sınıflandırılarak modelin performansı incelenmiştir. Geliştirilen modelin hataları daha yüksek doğrulukta tanılayabilmesi için model parametreleri örgü arama (ÖA), genetik algoritma (GA), diferansiyel evrim algoritması (DE) ve parçacık sürü optimizasyonu (PSO) yöntemleri ile optimize edilmiştir. Aynı veri seti üzerinde farklı yöntemlerle optimize edilen DVM sınıflandırıcısının hangi yöntem ile daha yüksek doğrulukla sınıflandırma yaptığı gösterilmiştir. Ayrıca akıllı bir yöntem olan DVM'nin klasik YGA değerlendirme yöntemleriyle karşılaştırması yapılmış ve optimizasyon yöntemine bağlı olmaksızın DVM'nin klasik yöntemlerden daha yüksek doğruluk oranı ile güç transformatörü hatalarını tanılayabildiği gösterilmiştir. Benzetim sonuçları göstermiştir ki, parçacık sürü optimizasyonu algoritması ile optimize edilen DVM diğer yöntemlere göre daha kısa sürede ve daha yüksek doğruluk oranı ile güç transformatörü hata tanılaması yapmıştır.
Özet (Çeviri)
In this thesis, support vector machine (SVM) is used for the fault diagnosis and classification of power transformer; one of the most substantial and expensive equipment in power systems. Effective and widely used dissolved gases analysis (DGA) technique is presented for the early detection of power transformer faults. Obtained DGA data with this method is classified with proposed SVM model to investigate the performance of the model. The model parameters are optimized with grid search method (GS), genetic algorithm (GA), differential evolution algorithm (DE) and particle swarm optimization (PSO) algorithm for higher diagnostic accuracy. It is presented which method is the most effective for the fault classification on the same data set. Moreover, SVM, an artificial intelligence method, is compared with classical DGA assessment techniques and it is found that SVM has better diagnostic accuracy from classical methods without depending on optimization method. Simulation results indicate that support vector machine optimized with particle swarm optimization method diagnose the fault more quickly and with higher diagnostic accuracy than the others.
Benzer Tezler
- Güç transformatörü hatalarının bulanık mantık ve Öz Düzenlemeli Haritalama Yöntemi ile belirlenmesi
Fault diagnosis of power transformers with fuzzy logic Self-Organizing Map
EMRE KEMİK
Yüksek Lisans
Türkçe
2016
Elektrik ve Elektronik MühendisliğiPamukkale ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. SELİM KÖROĞLU
- Havai güç hatlarının etrafındaki elektromanyetik alanlardan enerji hasadı
Energy harvesting from electromagnetic fields around overhead power lines
MAHMUT KABAKULAK
Yüksek Lisans
Türkçe
2020
Elektrik ve Elektronik MühendisliğiHarran ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ SERDAL ARSLAN
- Güç sistemlerinde dinamik voltaj regülatörün kullanılması
Using dynamic voltage regulator in power systems
ÖZGÜR ÖZDEMİR
Yüksek Lisans
Türkçe
2019
Elektrik ve Elektronik MühendisliğiPamukkale ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. SELİM KÖROĞLU
- Laboratuar ölçekli bir karma iletim hattında statcom kullanılarak sistem dinamik ve sürekli hal davranışlarının incelenmesi
Investigation of system dynamic and steady-state behaviours using statcom on a laboratory scale mixed transmission line
MEHMET ALİ ANADOL
Doktora
Türkçe
2012
Elektrik ve Elektronik MühendisliğiSelçuk ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. MUSA AYDIN
- Convolutional neural network based partial discharge pattern classification of medium voltage cable terminations
Orta gerilim kablo başlıklarında evrişimli sinir ağları ile kısmi boşalma örüntü sınıflandırılması
HALİL İBRAHİM ÜÇKOL
Yüksek Lisans
İngilizce
2020
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. DR. AYDOĞAN ÖZDEMİR