Terahertz(>0.3THz) active imaging systems
Terahertz(>0.3THz) aktif görüntüleme sistemleri
- Tez No: 441967
- Danışmanlar: DOÇ. DR. HAKAN ALTAN
- Tez Türü: Yüksek Lisans
- Konular: Fizik ve Fizik Mühendisliği, Physics and Physics Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2016
- Dil: İngilizce
- Üniversite: Orta Doğu Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Fizik Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 71
Özet
Imaging systems based on terahertz waves are becoming an integral part of commercial and military screening applications. In this thesis, the prototype of active scan THz imaging system was constructed for detection of concealed objects at standoff distance longer than 5m. The system was mounted on a platform that can adjust in height, tilt and azimuthal angle. The methods of generation and detection of THz signal are based on Schottky diode rectifiers and Schottky diode mixers. The wavelength of the continuous wave (CW) source is 880μm and measured output power was 7mW. The detector was Schottky diode based mixer and heterodyne detection method was used. The source and detector are constructed in a transceiver architecture using a directional coupler specially designed for this frequency. The leakage due to the directional coupler limited the dynamic range of the system to at most 20dB. The optical design of the active scan THz imaging system is based on Confocal Gregorian Geometry (CGG). In this geometry, the main elliptical mirror and secondary parabolic mirror were manufactured by machining bulk aluminum. The final optical system utilized 6 mirrors in total: a flat mirror to turn the beam, a short focal length parabolic reflector to collimate the beam, an XY scanning galvanometer mirrors assembly utilizing beryllium mirrors, and the main as well as secondary manufactured mirrors. Before testing the system, the output frequency of the source was determined by using dichroic filter, a metal mesh of patterned circular holes. The XY galvanometer mirror assembly allowed for imaging at 2 frames/s speed. The final constructed system allowed for imaging a 0.5m x 0.5m field of view with 1.5cm resolution at a standoff distance of about $6m$. By using the prototype, it was shown that obscured objects causing specular reflections was successfully detected from standoff distance. A metal stick, behind clothes and having $3cm$ thickness, was imaged.
Özet (Çeviri)
Imaging systems based on terahertz waves are becoming an integral part of commercial and military screening applications. In this thesis, the prototype of active scan THz imaging system was constructed for detection of concealed objects at standoff distance longer than 5m. The system was mounted on a platform that can adjust in height, tilt and azimuthal angle. The methods of generation and detection of THz signal are based on Schottky diode rectifiers and Schottky diode mixers. The wavelength of the continuous wave (CW) source is 880μm and measured output power was 7mW. The detector was Schottky diode based mixer and heterodyne detection method was used. The source and detector are constructed in a transceiver architecture using a directional coupler specially designed for this frequency. The leakage due to the directional coupler limited the dynamic range of the system to at most 20dB. The optical design of the active scan THz imaging system is based on Confocal Gregorian Geometry (CGG). In this geometry, the main elliptical mirror and secondary parabolic mirror were manufactured by machining bulk aluminum. The final optical system utilized 6 mirrors in total: a flat mirror to turn the beam, a short focal length parabolic reflector to collimate the beam, an XY scanning galvanometer mirrors assembly utilizing beryllium mirrors, and the main as well as secondary manufactured mirrors. Before testing the system, the output frequency of the source was determined by using dichroic filter, a metal mesh of patterned circular holes. The XY galvanometer mirror assembly allowed for imaging at 2 frames/s speed. The final constructed system allowed for imaging a 0.5m x 0.5m field of view with 1.5cm resolution at a standoff distance of about 6m. By using the prototype, it was shown that obscured objects causing specular reflections was successfully detected from standoff distance. A metal stick, behind clothes and having 3cm thickness, was imaged.
Benzer Tezler
- Terahertz haberleşme sistemlerinde kanal modelleme
Channel modeling in terahertz communication systems
DİDEM BORAN
Yüksek Lisans
Türkçe
2022
Elektrik ve Elektronik Mühendisliğiİskenderun Teknik ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. SELVA ÇÜRÜK
- Hierarchical dirichlet process based gamma mixture modelling for terahertz band wireless communication channels and statistical modelling of 240 GHz - 300 GHz band
Terahertz bandı kablosuz haberleşme kanalları için hiyerarşik dirichlet sürecine dayalı gamma karışım modeli ve 240 GHz-300 GHz bandının istatistiksel modellenmesi
ERHAN KARAKOCA
Yüksek Lisans
İngilizce
2022
Elektrik ve Elektronik Mühendisliğiİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. GÜNEŞ ZEYNEP KARABULUT KURT
- Image reconstruction based on active scan techniques in the terahertz frequency range
Aktif tarama teknikleri kullanarak terahertz frekans aralığında görüntü oluşturma
VEDAT ALİ ÖZKAN
Yüksek Lisans
İngilizce
2014
Fizik ve Fizik MühendisliğiOrta Doğu Teknik ÜniversitesiDOÇ. DR. HAKAN ALTAN
YRD. DOÇ. DR. ÖZGÜR ÖZDEMİR
- Area dependence of josephson critical current density in superconducting Bi2Sr2CaCu2O8+d mesas for terahertz emission
Terahertz ışıyan süperiletken Bi2Sr2CaCu2O8+d mesaların josephson kritik akım yoğunluğunun alana bağımlılığı
HİLAL SAĞLAM
Yüksek Lisans
İngilizce
2013
Fizik ve Fizik Mühendisliğiİzmir Yüksek Teknoloji EnstitüsüFizik Ana Bilim Dalı
PROF. DR. LÜTFİ ÖZYÜZER
- Imaging solar cells using terahertz waves
Terahertz dalgalarını kullanarak güneş gözelerini görüntüleme
SEDA KAYRA
Yüksek Lisans
İngilizce
2011
Fizik ve Fizik MühendisliğiOrta Doğu Teknik ÜniversitesiFizik Bölümü
YRD. DOÇ. DR. HAKAN ALTAN