Geri Dön

Elektrikli araçlarda kullanılan lityum iyon pillerin şarj durumlarının kokusuz Kalman filtresi ile kestirilmesi

State of charge estimation of li-ion battery with unscented Kalman filter used in electric vehicle

  1. Tez No: 465192
  2. Yazar: YUSUF MURATOĞLU
  3. Danışmanlar: YRD. DOÇ. DR. ALKAN ALKAYA
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2017
  8. Dil: Türkçe
  9. Üniversite: Mersin Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 78

Özet

Son yıllarda elektrikli araç (EA) kullanımı küresel ısınma ve sera gazı emisyonları üzerine artan endişeler ile hızla artmaktadır. Bu nedenle, şarj edilebilir piller elektrikli araçlarda umut verici alternatif bir güç kaynağı haline gelmiştir. Lityum iyon piller yüksek anma voltajı, yüksek enerji yoğunluğu, uzun ömrü ve hafıza etkisinin bulunmaması gibi önemli avantajlara sahiptir. Bu avantajlarından dolayı diğer pil teknolojileri olan kurşun asit piller, nikel tabanlı piller ve sodyum tabanlı pillere kıyasla elektrikli araçlarda daha yaygın kullanılmaktadır. Lityum iyon pillerin pilin güvenliğini, güvenirliğini ve performansını arttırmak için batarya yönetim sistemi ile birlikte kullanılması gereklidir. Pil doluluk oranı batarya yönetim sisteminin önemli bir bileşenidir. Doğru bir pil modeli üzerinden voltaj, akım gibi ölçülebilen değerler kullanılarak pil doluluk oranının doğru bir şekilde kestirilmesi batarya yönetim sisteminin etkinliği için çok önemlidir. Bu çalışmada lityum iyon pilin dinamik karakteristiğine uygun olarak kapasite-direnç değişim etkisini ve sıcaklık etkisini içeren dinamik bir pil modeli oluşturuldu. Kokusuz Kalman filtresi ve genişletilmiş Kalman fitresi algoritmaları kullanılarak oluşturulan dinamik pil modeli üzerinden lityum iyon pilin pil doluluk oranı kestirildi. Kestirim sonucuna göre her iki algoritmanın performanslarının iyi olduğu ancak kokusuz Kalman filtresinin pil doluluk oranı kestirim sonucunun doğruluk ve işlem zamanı performansı genişletilmiş Kalman filtresine göre daha başarılı olduğu görüldü.

Özet (Çeviri)

In the last decades, the use of electric vehicles (EVs) is developed rapidly with the increasing concerns on global warming and greenhouse gas emissions. Therefore rechargeable batteries have become a promising alternative power source in EVs. Lithium-ion (Li-ion) batteries are widely used in EVs due to its, high energy density, high nominal cell voltage, long life and not having a memory effect in comparison with other rechargeable batteries such as Lead-Acid battery, Ni-based batteries and Na-based batteries. To improve safety, reliability and performance of the li-ion battery, it needs to be used with battery management system (BMS) in EVs. State of charge (SoC) of the lithium-ion battery is a key component of the BMS. Accurate estimation of SoC by using the measured signals such as voltage and current via accurate battery model is crucial for efficient of BMS. In this study, dynamic battery model including capacity-resistance change effect and temperature effect at dynamic characteristic of the li-ion battery is developed. Unscented Kalman filter (UKF) and extended Kalman filter (EKF) algorithms applied to estimate SoC of developed dynamic battery model. It was observed that UKF and EKF algorithms both are applicable and UKF algorithm is better than EKF algorithm with SoC accuracy and computational time.

Benzer Tezler

  1. Designing a thermal management system for lithium-ion batterypacks used in electrical vehicles

    Elektrikli araçlarda kullanılan lityum iyon akü paketleri için termal yönetim sistemi tasarımı

    MOHAMMAD ALIPOUR

    Doktora

    İngilizce

    İngilizce

    2019

    EnerjiKoç Üniversitesi

    Kimya ve Biyoloji Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SEDA KIZILEL

  2. State of charge estimation of lithium-ion batteries using machine learning approach

    Makine öğrenmesi yaklaşımı kullanılarak lityum iyon pillerin şarj durumu tahmini

    OSMAN ALPER ALTUN

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektrik Mühendisliği Ana Bilim Dalı

    PROF. DR. EMİNE AYAZ

  3. Elektrikli araçlarda kullanılan volan sistemlerinin uygulamalı karşılaştırılması

    Applied comparison of flywheel systems used in electric vehicles

    ZEYNEB NURİYE KURTULMUŞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    EnerjiKocaeli Üniversitesi

    Enerji Sistemleri Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ABDULHAKİM KARAKAYA

  4. Investigation of separation and recovery of cobalt from end-of-life lithium-ion battery by hydrometallurgical approach

    Ömrü sonlanmış lityum-iyon pilden kobaltın ayırılması ve geri kazanılmasının hidrometalürjik yaklaşımla incelenmesi

    SEVDE RANA GÜNAL

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Mühendislik Bilimleriİstanbul Teknik Üniversitesi

    Malzeme Bilimi ve Mühendisliği Ana Bilim Dalı

    PROF. DR. SERVET İBRAHİM TİMUR

  5. Atık lityum iyon pil katot malzemesinin anyonik yüzey aktif madde kullanarak akım toplayıcıdan ayrılması

    Separation of waste lithium-ion battery cathode material from current collector using anionic surfactant

    MUHAMMED EMİN ŞEYİB

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Kimya MühendisliğiAtatürk Üniversitesi

    Kimya Mühendisliği Ana Bilim Dalı

    DOÇ. DR. HAKAN TEMÜR