Geri Dön

Development of a unified analysis framework for multicolor flow cytometry data based on quasi-supervised learning

Çok renkli akış sitometrisi verileri için yarıgüdümlü öğrenme temelli tümleşik bir analiz platformu geliştirilmesi

  1. Tez No: 473171
  2. Yazar: BAŞAK ESİN KÖKTÜRK GÜZEL
  3. Danışmanlar: PROF. DR. BİLGE KARAÇALI
  4. Tez Türü: Doktora
  5. Konular: Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2017
  8. Dil: İngilizce
  9. Üniversite: İzmir Yüksek Teknoloji Enstitüsü
  10. Enstitü: Mühendislik ve Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 105

Özet

Bu tezde, çok renkli akış sitometri veri analizi için otomatik kompensasyon ve kapı- lama stratejileri incelenmiştir. Otomatik kapılama için yarı-güdümlü öğrenme algoritmasını ve beklenti en iyileme rutinini birleştirerek iki gruplama algoritması önerilmiştir. Yarı-güdümlü öğrenme algoritması veriye parametrik bir model uydurmadan, her bir örnekteki farklı hücre populasyonlarının sonsal olasılıklarını tahmin eder. Sorumluluk değerleri konvansiyonel beklenti en iyileme uygulamalarında kullanılan olasılık modelleri yerine, yarı-güdümlü öğrenme algoritması ile hesaplanarak beklenti en iyilemeye dayalı iki tane ikili kümeleme algoritması geliştirilmiştir. Kümeleme algoritmalarımız, her bir geçici bölünmede tahmini kümeler arasındaki örtüşmeyi ölçerek ve bu örtüşmeyi bir önceki ile karşılaştırarak, bölünmenin doğru olup olmadığını belirler ve böylelikle işleyiş sürecinde küme sayısını belirler. Bu tür kümeleme, veri kümesinin altında yatan dağılıma kayıtsız olduğundan, otomatik akış sitometri kapılaması icin uygundur. İkinci kümeleme algoritması benzetimli tavlama yaklaşımını kullanarak ilk kümeleme algoritmasını geliştirmiştir. Benzetimli tavlama yaklaşımının tekrarlayıcı yapısı bir maliyet fonksiyonun global minimumunu bulmayı sağlar ve biz bu yaklaşımı karar bölgelerini her tekrarda kademeli olarak yumuşatarak en iyi ayrışma noktasını bulmak için kullandık. Son olarak, yukarıdaki kapılama yöntemlerine dayalı olarak akış verisinin otomatik olarak kompensasyonu için bir ortak köşegenleştirme ve kümeleme yöntemi geliştirdik. Kompensasyon, farklı florokrom kanalları arasındaki spektral yayılımı gidermek için kullanılan bir prosedürdür. Önerilen yöntem, hücre alt gruplarını tavlama temelli modelden bağımsız beklenti en iyileme algoritması kullanarak tanımlamakta ve tanımlanan her bir hücre kümesinin kovaryans yapısının dikkenliğini, hızlı Frobenius köşegenleştirme yöntemini kullanarak elde eden bir veri dönüşüm matrisi bularak sağlamaktadır. Önerilen algoritmalar sentetik olarak oluşturulan veri kümeleri ve gerçek çok renkli akış sitometrisi veri kümeleri üzerinde test edilmiştir. Sonuçlar, otomatik kapılama algoritmalarımızın yeterli istatistiksel kanıtı olduğu sürece farklı hücre gruplarını tanımada çok başarılı olduğunu göstermektedir. Buna ek olarak, otomatik kompensasyon prosedürünü başarılı bir şekilde sentetik olarak oluşturulmuş¸ veri setine ve gerçek düşük otofloresanslı lenfosit hücre gruplarına başarıyla uygulanmıştır, ancak, dikgen kovaryans matrisinin geçerli olmadığı yüksek otofloresanslı hücre türlerine genellenebilmesi için daha fazla bir çalışmaya ihtiyaç duyulmaktadır.

Özet (Çeviri)

In this dissertation, automatic compensation and gating strategies are investigated for multi-color flow cytometry data analysis. We propose two clustering algorithms that combine the quasi-supervised learning algorithm with an expectation-maximization routine for automatic gating. The quasi-supervised learning algorithm estimates the posterior probabilities of the different cell populations at each sample in a dataset in a manner that does not involve fitting a parametric model to the data. We have developed two different binary divisive clustering algorithms based on expectation maximization with responsibility values calculated using the quasi-supervised learning algorithm instead of the probabilistic models used in conventional expectation maximization applications. Our clustering algorithms determine the number of clusters in run-time by measuring the overlap between the estimated clusters in each provisional division and comparing it with the previous one to determine whether the division is warranted or not. Since this type of clustering is indifferent to the underlying distribution of dataset, it is well suited to automatic flow cytometry gating. The second clustering algorithm improves upon the first one using a simulated annealing approach. Its iterative structure allows finding the global minimum of a cost functional that achieves the best separation point by gradually smoothing the decision regions in each iteration. Finally, we have developed a joint diagonalization and clustering method for automatic compensation of flow data based on the methods above. The proposed method identifies cell sub groups using the annealing-based model-free expectation-maximization algorithm and finds a data transformation matrix that achieves orthogonality of the covariance structure of each identified cell cluster using fast Frobenius diagonalization. We have tested all proposed algortihms on both synthetically created datasets and real multi-color flow cytometry datasets. The results show that our automated gating algorithms are very successful in identifying the distinct cell groups so long as there is enough statistical evidence for their presence. In addition, the automated compensation procedure was also successfully applied on the synthetically created dataset and real multi-color flow cytometry data of lymphocytes that are a low autofluorescence cell group. However, the automated compensation algorithm needs further study to be generalized to high autofluorescence cell types where proper compensation does not necessarily coincide with an orthogonal covariance structure.

Benzer Tezler

  1. Applications of artificial intelligence for the security of networks

    Ağ güvenliği için yapay zeka uygulamalari

    SELEN GEÇGEL ÇETİN

    Doktora

    İngilizce

    İngilizce

    2025

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. GÜNEŞ ZEYNEP KARABULUT KURT

  2. Sürekli tip cam ergitme fırınları için hesaplamalı akışkanlar dinamiği tabanlı indirgenmiş model geliştirilmesi

    Development of a computational fluid dynamics based reduced order model for continuous glass melting furnaces

    ENGİN DENİZ CANBAZ

    Doktora

    Türkçe

    Türkçe

    2025

    Makine Mühendisliğiİstanbul Teknik Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    PROF. DR. MESUT GÜR

  3. Stability and lipschitz stability criteria of set valued differential equations and its applications

    Küme degerli diferensiyel denklemlerin stabilite ve lipschitz stabilite kriterleri ve uygulamaları

    TUBA SATILMIŞ

    Yüksek Lisans

    İngilizce

    İngilizce

    2025

    MatematikGebze Teknik Üniversitesi

    Matematik Ana Bilim Dalı

    PROF. DR. COŞKUN YAKAR

  4. Kocaeli Arkeoloji ve Etnografya Müzesi'ndeki keseler üzerinden tekstil eserlerin korumaya yönelik belgelenmesi

    Documentation of textile artefacts of conservation through pouches in Kocaeli Archeology and Ethnography Museum

    ALPER FATİH ABİDİN

    Doktora

    Türkçe

    Türkçe

    2025

    ArkeometriAnkara Hacı Bayram Veli Üniversitesi

    Kültür Varlıklarını Koruma Ana Bilim Dalı

    DOÇ. DR. HATİCE TOZUN

  5. Gemilerde kullanılan seçici katalitik indirgeme sistemlerinde tortu oluşumunun ve azot oksit indirgeme performanslarının deneysel ve sayısal olarak incelenmesi

    Experimental and numerical investigation of urea-deposit formation and nitrogen oxide reduction performances in selective catalytic reduction systems used on marine vessels

    TALAT GÖKÇER CANYURT

    Doktora

    Türkçe

    Türkçe

    2023

    Gemi Mühendisliğiİstanbul Teknik Üniversitesi

    Gemi İnşaatı ve Gemi Makineleri Mühendisliği Ana Bilim Dalı

    PROF. DR. SELMA ERGİN