Handwriting recognition of Arabic letters using pattern recognition approaches
Arapça el yazısı harflerin örüntü tanıma yaklaşımları kullanılarak tanınması
- Tez No: 490283
- Danışmanlar: YRD. DOÇ. DR. GÖKHAN ŞENGÜL
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2017
- Dil: İngilizce
- Üniversite: Atılım Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 72
Özet
El yazısı ile yazılmış harflerin otomatik olarak tanınması; ofis otomasyonu, bankacılık ve güvenlik gibi birçok alanda insanlar ve makineler arasındaki etkileşimi geliştirmek için kullanılır ve insanlar tarafından yazılmış dokümanların makine ile kodlanmış hale dönüştürme sürecidir. Bu tezde, Arapca el yazısı karekterlerin tanınması için gri seviyeli eş oluşum matrisleri (GLCM), yerel ikili örüntü (LBP), yapay sinir ağı (ANN) ve odaklı gradient histogram (HOG) olarak adlandırılan ozellik çıkarma ve sınıflandırma yaklaşımları karşılaştırılmıştır. GLCM, LBP ve HOG özellik çıkarımı için kullanılan yöntemler olup çıkarılan özelliklerden sınıflandırma yapmak için K-en yakın komşu (KNN) sınıflandırma yaklaşımı kullanılmıştır. ANN'de ise sinir ağı girdisi için piksel değerlerinin yoğunlukları kullanılmıştır. Her yöntemin sonuçlarını değerlendirmek için karışıklık matrisi (CM) tekniği ve çapraz geçerleme yöntemleri izlenmiştir. Sonuçlar; HOG (odaklı gradient histogram)'un en yüksek doğruluğu verdiği, en az doğruluk performansının ise gri seviyeli eş oluşum matrisleri tarafından elde edildiği gözlemlenmiştir.
Özet (Çeviri)
Handwriting recognition is the process of detecting and converting letters written by humans into machine-encoded forms to improve the interaction between humans and machines in many fields like office automation, banking and business. In this thesis, we apply four recognition methods for Arabic letters recognition, namely gray level co-occurrence matrix (GLCM), local binary pattern recognition (LBP), artificial neural network (ANN) and histogram of oriented gradients (HOG). The three methods, GLCM, LBP and HOG are used for feature extraction. In ANN we use the intensity values of pixels for input of the neural network. For classification the K-Nearest Neighbor (KNN) is used for the LBP, GLCM and HOG. To evaluate the results of each method, Confusion Matrix (CM) technique is used. The results show that HOG have the highest accuracy, while the least accuracy is achieved by GLCM.
Benzer Tezler
- Use of convolutional neural network for recognition of arabic handwriting characters
Arapça el yazısı karakterlerin tanınmasında konvolusyonel sınır ağları kullanımı
MOHAMMED WIDAD JBRAIL JBRAIL
Yüksek Lisans
İngilizce
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHarran ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. MEHMET EMİN TENEKECİ
- A large vocabulary online handwriting recognition system for turkish
Türkçe için geniş dağarcıklı çevrimiçi el yazısı tanıma sistemi
ESMA FATIMA BİLGİN TAŞDEMİR
Doktora
İngilizce
2018
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSabancı ÜniversitesiBilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı
PROF. DR. AYŞE BERRİN YANIKOĞLU YEŞİLYURT
- El yazısı karakter tanıma ve resim sınıflandırmada derin öğrenme yaklaşımları
Deep learning approaches in handwritting character recognition and image classification
AOUDOU SALOUHOU
Yüksek Lisans
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFatih Sultan Mehmet Vakıf ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ BERNA KİRAZ
- Deep learning based offline handwritten character recognizer systems with a multilingual handwritten character dataset
Derin öğrenme tabanlı çevirimdışı etkileşimsiz el yazılı karakter tanıma sistemleri ile çok dilli el yazısı karakter veri seti
GAYE EDİBOĞLU BARTOS
Doktora
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEskişehir Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. YAŞAR HOŞCAN
DOÇ. DR. ÉVA NAGYNÉ HAJNAL
- On the analysis of deep convolutional neural networks applied to building detection in satellite images
Uydu görüntülerinde bina tanımaya uygulanan derin evrişimsel sinir ağlarının çözümlemesi üzerine
BATUHAN KARAGÖZ
Yüksek Lisans
İngilizce
2015
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. FATOŞ TUNAY YARMAN VURAL