Self-organizing features for regularized image standardization
Başlık çevirisi mevcut değil.
- Tez No: 508076
- Danışmanlar: Dr. JOHN HARRIS
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2001
- Dil: İngilizce
- Üniversite: University of Florida
- Enstitü: Yurtdışı Enstitü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 126
Özet
Özet yok.
Özet (Çeviri)
Image standardization is an important preprocessing step in several image processing applications. In neuroimaging, by reducing normal variability through the standardization of brains, functional activity from multiple subjects can be overlaid to study localization. Furthermore, variability outside normal ranges can be used to report abnormalities. In automatic facial expression recognition, by standardizing the facial features, the accuracy of the facial expression recognition can be increased. The current standardization methods are mostly based on global alignment and warping strategies. However, global standardization methods fail to align individual structures accurately. In this study, we propose a feature-based, semi-automatic, non-parametric, and non-linear standardization framework to complement the existing global methods. The method consists of three phases: In phase one, templates are generated from the atlas structures, using Self-Organizing Maps (SOMs). The parameters of each SOM are determined using a new topology evaluation technique. In phase two, the atlas templates are reconfigured using points from individual features, to establish a one-to-one correspondence between the atlas and individual structures. During training, a regularization procedure can be optionally invoked to guarantee smoothness in areas where the discrepancy between the atlas and individual feature is high. In the final phase, difference vectors are generated using the corresponding points of the atlas and individual structure. The whole image is warped by interpolation of the difference vectors through Gaussian radial basis functions, which are determined by minimizing the membrane energy. Results are demonstrated on simulated features, as well as selected sulci in brain MRIs, and facial features. There are two significant advantages of this system over the existing standardization schemes: increased accuracy and speed in the alignment of internal features. Although our framework does not handle standardization of global shape and size differences, it can easily be used as a complementary module for the existing global standardization techniques, to increase precision of local alignment.
Benzer Tezler
- Hücresel ağlarda hücre hizmet kesintisinin yeni nesil derin öğrenme algoritmaları ile tespiti
Detection of cell outages in cellular networks with new generation deep learning algorithms
HASAN TAHSİN OĞUZ
Doktora
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAnkara ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ AYKUT KALAYCIOĞLU
- Prediction of protein subcellular localization based on primary sequence date
Birincil dizi veri temelli protein hücre içi yer belirleme tahmini
MERT ÖZARAR
Yüksek Lisans
İngilizce
2003
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. VOLKAN ATALAY
- An information gain based feature selection method and a network-based intrusion detection system framework utilizing anomaly detection using self organizing maps
Bilgi kazanç tabanlı özellik seçme metodu ve kendi kendini eğiten haritalar kullanılarak olağandışılık tespiti yapan ağ tabanlı girişim tespit sistemi
FATİH TİRYAKİOĞLU
Yüksek Lisans
İngilizce
2008
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
PROF. EMİN ANARIM
YRD. DOÇ. KEREM HARMANCI
- Modelling and predicting binding affinity of PCP-like compounds using machine learning methods
Makine öğrenimi yöntemlerini kullanarak PCP benzeri bileşiklerin modellenmesi ve bağlanma eğilimlerinin tahmini
ÖZLEM ERDAS
Yüksek Lisans
İngilizce
2007
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolOrta Doğu Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. FERDA NUR ALPASLAN
PROF. DR. ERDEM BÜYÜKBİNGÖL
- Security in wireless sensor networks
Telsiz sensör ağlarda güvenlik
SERDAR SANCAK
Yüksek Lisans
İngilizce
2003
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolDeniz Harp Okulu KomutanlığıBilgisayar Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. VEDAT COŞKUN
DR. ERDAL ÇAYIRCI