Çözelti yanma senteziyle tungsten oksit üretimi ve fotokatalitik özelliklerinin incelenmesi
Tungsten oxide production by slution combustion synthesis and its photocatalytic activity investigation
- Tez No: 510817
- Danışmanlar: DR. ÖĞR. ÜYESİ MEHMET ŞEREF SÖNMEZ
- Tez Türü: Yüksek Lisans
- Konular: Mühendislik Bilimleri, Engineering Sciences
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2018
- Dil: Türkçe
- Üniversite: İstanbul Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Malzeme Bilimi ve Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Malzeme Bilimi ve Mühendisliği Bilim Dalı
- Sayfa Sayısı: 83
Özet
Geçiş Metal Oksitleri (GMO) diğer oksitlere göre sıradışı fiziksel, optik ve elektriksel özelliklere sahiptirler. GMO'lar arasında en çok çalışılan malzemelerden biri tungsten oksittir. Tungsten oksit CO2 redüklenmesi, kirli hava ve atık su filtreleme uygulamaları, lityum bataryalarda, gaz sensörlerinde, süperkapasitörlerede, elektrokromik uygulamalarda, hidrojen üretiminde, kanser terapisinde, fototerapi uygulamaları gibi birçok kritik uygulamada kullanılmaktadır. Bu kadar çeşitli uygulamalarda kullanılmasın daki sebeplerinden birisi tungsten oksidin stokiyometrik (WO3, a-WO3 b-WO3 h-WO3) ve stokiyometri dışı birçok bileşiğinin (WO2,9, WO2, WO2,7 gibi) olması ve karmaşık kimyasından dolayı herbir bileşiğinin farklı özellikler göstermesidir. Özellikle WOx£3 ailesi değiştirilebilir yapısından ve özgün fizikokimyasal özelliklerinden dolayı fotokatalitik, fototerapi, elektrokimya gibi uygulamaların ilgi odağı olmuştur. Tungsten oksit elektrokromik özelliğin ilk keşfedildiği malzemedir ve bundan dolayıda literatürde en çok elektromik özelliği üzerine çalışmalar mevcuttur. Ancak bunun yanı sıra fotokatalitik özelliğiyle de araştırmacıların ilgi odağı olmuştur. Tungsten oksit 2,5-2,8 eV bant aralığı ile solar spektrumun bir kısmını emerek görülebilir dalga boyunda da katalitik aktivite göstermektedir. Bu özelliği ile de en çok bilinen fotokatalitik malzeme olan TiO2'den daha ön plana çıkmaktadır. Çözelti Yanma Sentezi (ÇYS) hızlı, kolay ve yüksek safiyette metal ve metal oksit tozu sentezleme yöntemidir. Bu yöntem kendiliğinden ilerleyen yüksek sıcaklık sentezinin çözelti ortamında gerçekleştirilen türüdür. Çözelti ortamında gerçekleştirilmesinin en büyük avantajlarından biri başlangıç malzemelerinin moleküler seviyede karıştırılması ve bu sayede daha saf ve istenilen fazda yapılar elde edilebilmektedir. Ayrıca ÇYS'de sistem parametreleri (yakıt tipi, yakıt/oksitleyici oranı, reaksiyon ortamı gibi) optimize edilerek istenilen özelliklerde ürün eldesi de yapılabilmektedir. Bu tez kapsamında ÇYS parametrelerinin WO3 tozu üzerindeki etkisinin incelenmesi ve ardından farklı özelliklerde elde edilen WO3 tozlarının organik boyaları fotokatalitik etki ile degredasyonunun incelenmesi amaçlanmaktadır. Bu bağlamda literatürde WO3 sentezinde kullanılmayan oksalik asit özgün yakıt olarak tercih edilmiştir. Ayrıca literatür ile kıyaslamak amacıyla sitrik asitte kullanılmıştır. Bu iki yakıt kullanılarak farklı sıcaklıklarda, farklı Y/O oranlarında ve ilave oksitleyici kullanılarak bu parametrelerin toz üzerindeki etkisi incelenmiştir. Daha sonrasında kalsinasyon uygulanarak elde edilen tozların faz değişimi ve stabilitesi ortaya konmuştur. Elde edilen sonuçlardan anlaşıldığı üzere sitrik asit kullanılarak üretilen toz da ilk adımda elde edilemeyen WO3 fazı oksalik asit kullanılarak üretilen numunelerde 01- 085-2459 numaralı ICSD kartı ile eşleştirilmiştir. Sitrik asit kullanılarak üretilen numunede ise kalsinasyon sonrasında, oksalik asit ile üretilen numuneden daha farklı bir WO3 fazı (ICSD : 00-033-1387) elde edilmiştir. Oksalik asit kullanılarak elde edilen numunelerde farklı reaksiyon sıcaklıkları (250C°, 300°C, 350°C, 400°C) denenmiştir. Bu deney setinde WO3 fazı elde edilmesine karşın , reaksiyon sıcaklığının faz oluşumu üzerinde herhangi bir etkisinin olmadığı anlaşılmıştır. Yapılan fotokatalitik deneyler sonucunda üretilen WO3'ün metilen mavisi ile kirletilmiş suyu degrede ederek zararsız hale çevirdiği gözlemlenmiştir. En iyi performansı Y/O oranı 5 olan numune göstermiştir. 60 dakikadan daha kısa sürede metilen mavisini degrede ederek adsorpsiyon 0'a düşmüştür. Karşılaştırmak amacıyla yapılan ticari toz deneyinden ise olumlu sonuç alınamamıştır.
Özet (Çeviri)
Transition Metal Oxide (TMO) has unusual physical, optical and electrical properties compared to other oxides. One of the very well TMOs is tungsten oxide. Tungsten oxide can be used in many critical applications such as CO2 reduction, water splitting, polluted air and wastewater filtration applications, lithium batteries, gas sensors, supercapacitors, electrochromic applications, hydrogen production, cancer therapy, phototherapy applications. Tungsten oxide is readily used for photocatalytic degredation applications. Especially, WO3 is capable to degrade polluted water by cationic dyes due to highly negative tungsten oxide surface charges. The reason WO3 is used in such a wide application areas is tungsten oxide compunds' variety and showing stoichometric (WO3, a-WO3 b-WO3 h-WO3) and sub-stoichometric (WO2,9, WO2, WO2,7 gibi) compunds. In particular, WOx£3 family recievs considerable attention because of its tunable structure and its unique physicochemical properties. Tungsten oxide is the first material which the electrochromic property is discovered, and therefore there is a great deal of literature on the electrochromic properties. In addition, it is very attractive with its photocatalytic properties. Tungsten oxide absorbs a fraction of the solar spectrum with a band gap of 2.5-2.8 eV and exhibits catalytic activity at visible wavelengths. This makes it one step further candidate for photocatalytic applications in comparision to very well known TiO2 photocatalysis. Solution Combustion Synthesis (SCS) is a fast, easy and high purity metal and metal oxide powder synthesis method. This method is a kind of Self Propagating High Temperature Synthesis (SHS) method conducted in solution medium. One of the greatest advantage of conducting the method in solution medium is to mix precursors at molecular level, and this gives high purity and desired phase. In addition, by tuning process parameters such as Fuel to Oxidizer ratio (F/O), fuel type, reaction medium etc. desired morphology, phase, and composition can be obtained. One of the crucial parameter is F/O ratio, and this is readily studied in literature. By changing this ratio, powder morphology, particle size and surface area can be changed and controlled. Once F/O ratio is increased, due to high amount of released gases, particle size decreases, and surface area increases. In the scope of the thesis, it is aimed to investigate SCS parameters influence on final product properties, and then photocatalytic activity investigation is conducted to observe methylene blue degredation by SCS produced WO3. Oxalic acid is determined as non investigated fuel in SCS for WO3 powder production in literature against it is readily used for other metal oxides. Beside that citric acid is also used to make a comparision with literature. By using these two fuels, different experiments having different F/O ratio, different reaction starting temperature, and different supplementary oxidizers were conducted. Also, calcination was applied to samples just to understand phase transformation and stability. According to experimental results obtained, it is understood that WO3 cannot be obtained in a single step by using citric acid. In spite of citric acid, WO3 phase is obtained by using oxalic acid in a single step. XRD pattern is matched with 01-085- 2459 ICSD card. The sample produced by using sitric acid can only be transformed to WO3 phase after calcination at 500°C during 8 hours. But now it is matched with different WO3 phase (ICSD : 00-033-1387) from the sample produced by using oxlic acid. This states that citric acid and oxalic acid produces different WO3 phases. Just to understand phase stability and transformation temperature, calcination at 500°C is also performed for samples produced by oxalic acid. After calcination, samples maintained the same crystalline phase. Different reaction starting temperature (250C°, 300°C, 350°C, 400°C) was applied to sample produced by oxalic acid. However, no reaction starting temperature influence was observed on WO3 phase, all phases were the same, and matched with 01-085-2459 ICSD pattern. Beside, it is thougt that starting temperature might affect powder morphology. As stated above, fuel to oxidizer ratio is a critical parameter in SCS. To elaborate its influence on particle morphology, and surface area samples with different F/O ratio (1, 2.5, 5) were produced for both fuel. The sample produced by citric acid with F/O ratio 5 had porous structre observed from SEM images. This result is very well matched with the literature. However, this is not the same for samples produced by oxalic acid. Although sample produced by oxalic acid, and with F/O ratio 1 has 17,5 m2/g surface area, the sample produced with F/O ratio 5 has 6,7 m2/g surface area. This result is conflicting with literature. This might occur due to high temperature reached during synthesis with high F/O ratio. Fuels we used can be burned with atmospheric oxygen, and this causes extreme temperature. Furthermore, particle coarsening, and melting at some area can take place. This might be the the reason why we obtained different results from literature. In SCS experiments , direct metal nitrates are used as a metal source but this is different for our case. Ammonium tungstate was used in our experiments due to absence of tungsten nitrates. Because of that, additional oxidizers (nitric acid and amonium nitrate) were also used to produce more stable complexes. First, amonium nitrate was added to sample produced by oxalic acid, and It is understood from XRD results ammonium nitrate addition produced more stable structure. But for citric acid, we could not obtain a single WO3 phase with the addition of ammonium nitrate. This addition caused a column type structure for the sample produced by citric acid as understood from SEM image. For the same purpose addition of 5% HNO3 to samples produced by oxalic acid was also tried. Now, addition to oxalic acid produced samples gave a different result from addition of ammonium nitrate. As obtained powder can not be indexed to any WO3 phase despite it is highly crystalline. Furthermore, obtained powder was washed with 1% HNO3 several times and the same WO3 phase (01-085- 2459 ICSD) was obtained. It is concluded that nitric acid addition created different crystalline phases as an impurity, and they were all successfully removed by nitric acid washing. As synthesized powders were photocatalytically tested. For this purpose, methylene blue was used as an organic dye. 40 mg methylene blue was dissolved in distelted 1 L water and hydrogen peroxide was added as an oxidizer. Powders synthesized by oxalic acid with different fuel to oxidezer ratio were added to the solution, and mixed in dark to reach adsorption desorption equilibrium. After that each solution was exposed to sunlight. With 30 minutes intervals, sample was taken for uv-vis spectrophotometer analysis. All as prepared samples were showed 0 adsorption after 60 minutes. Especially, the sample with F/O ratio 5 showed fastest degredation. It showed 0 adsorption before 30 minutes. For benchmarking, commercial powder was also tested. It could not degrade the methylene blue even after 3 hours. It exhibited very low amount of degradation. It can be concluded that SCS synthesized powders are much more photocatalytically active than commercial powder. In summary, WO3 phase can only be obtained by using oxalic acid in a single step. The sample produced by citric acid was transformed to WO3 phase after calcination at 500°C. From the point of photocatalytic activity, the sample produced by oxalic acid with F/O ratio 5 exhibited the best performance in comparision to commercial powder, and the sample with F/O ratio 1.
Benzer Tezler
- Çözelti yanma senteziyle üretilen vanadyum oksitlerin ince film kaplanması ve optik ve elektrokimyasal karakterizasyonu
Thin film coating of vanadium oxides produced by solution combustion synthesis its optical and electrochemical characterization
ESMA YILMAZ
Yüksek Lisans
Türkçe
2017
Metalurji Mühendisliğiİstanbul Teknik ÜniversitesiMetalurji ve Malzeme Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. MEHMET ŞEREF SÖNMEZ
- Cu ve CuNi nanopartiküllerinin çözelti yanma senteziyle üretimi ve karakterizasyonu
Production and characterisation of Cu and CuNi nanoparticles with solution combustion synthesis
MUSTAFA ÇAĞRI ALTINBAŞ
Yüksek Lisans
Türkçe
2022
Metalurji Mühendisliğiİstanbul Teknik ÜniversitesiMetalurji ve Malzeme Mühendisliği Ana Bilim Dalı
DOÇ. DR. MEHMET ŞEREF SÖNMEZ
- Fe-Co-Cu oksit nanoparçacıklarının çözelti yanma senteziyle üretimi ve süperkapasitör uygulamaları
Synthesis of Fe-Co-Cu oxide nanoparticles by solution combustion synthesis and supercapacitor applications
SÜMRAN BİLGİN
Yüksek Lisans
Türkçe
2022
Metalurji MühendisliğiKaradeniz Teknik ÜniversitesiMetalurji ve Malzeme Mühendisliği Ana Bilim Dalı
PROF. DR. ÜMİT ALVER
- Çözelti yanma sentezinde farklı yakıtlar kullanılarak hidroksiapatit üretimi
Production of hydroxyapatite using different fuels in solution combustion synthesis
DENİZ ALTAN
Yüksek Lisans
Türkçe
2022
Metalurji Mühendisliğiİstanbul Teknik ÜniversitesiMetalurji ve Malzeme Mühendisliği Ana Bilim Dalı
DOÇ. DR. MEHMET ŞEREF SÖNMEZ
- Bayer gibsiti ve aluminyum tuzlarından yüksek saflıkta alüminyum hidroksit ve alümina üretimi
Synthesis of high purity aluminium hydroxide and alumina from Bayer's gibbsite and aluminium salts
YASEMEN GÜLDOĞAN
Yüksek Lisans
Türkçe
2014
Metalurji MühendisliğiAnadolu Üniversitesiİleri Teknolojiler Ana Bilim Dalı
PROF. DR. ENDER SUVACI