Geri Dön

Developing the recurrent neural network with long-short term memory and word2vec representation for sentiment classification

Duygu sınıflandırma için uzun kısa süreli bellek ve word2vec temsilcisi ile yenileme neural ağının geliştirilmesi

  1. Tez No: 521442
  2. Yazar: FALAH AMER ABDULAZEEZ AL-KUBAISI
  3. Danışmanlar: Assist. Prof. Dr. ABDÜL KADİR GÖRÜR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: İngilizce
  9. Üniversite: Çankaya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgi Teknolojileri Ana Bilim Dalı
  12. Bilim Dalı: Bilgisayar Sistemleri Bilim Dalı
  13. Sayfa Sayısı: 79

Özet

Makine öğreniminin en önemli bileşenlerinden bir tanesi sınıflandırmadır. Duygu analizi, sınıflamanın alt alanlarından biridir. Duygu analizi insanların duygularıyla ilgili düşüncelerini araştıran ve sınıflandıran yöntemlerle çalışır ve konuya ve hatta diğer metinlere yönelik altta yatan izlenimleri çıkarır. Bu çalışmada, metinleri olumlu ya da olumsuz olarak analiz edebilen ikili duygu sınıflandırması için bir sinir ağı modeli geliştirmeye çalıştık. Pek çok makale olasılıksal sınıflandırıcıların ve doğrusal sınıflandırıcı (SVM) yöntemlerinin Yapay Sinir Ağı yöntemlerinden daha doğru olduğu sonucuna varmışlardır. Bu çalışmada, Sinir Ağ yöntemleri alanında gelişme için daha fazla alan olduğunu kanıtladık. Sonuçlarımızı dört denetimli öğrenme yöntemi ile karşılaştırdık: Naïve-Bayes, Maksimum Entropi, Destek Vektör Makinesi ve Stokastik Gradyan Descent. Bahsi geçen bu yöntemler ile karşılaştırıldığı durumda daha iyi sonuçlar elde ettik. RNN (Tekrarlayan Nöral Ağ) ile Glove (Kelime Temsili Global Vektörler) kullanarak% 91.04 doğruluk elde ettik.

Özet (Çeviri)

One of the major components of machine learning is classification. Sentiment analysis is one of the sub-fields of classification. It works on the methods that study and classify the opinions of people regarding their feelings and it extracts any underlying impressions toward subjects or even other texts. In this study, we worked on developing a neural network model for binary sentiment classification which can analyze data as being either positive or negative. Many papers conclude that probabilistic classifiers and linear classifier (SVM) methods are more accurate than Neural Network methods. In this study, we proved (demonstrated) that there is more space for development in the Neural Network methods field. We compared our results with four supervised methods: Naïve Bayes, Maximum Entropy, Support Vector Machine, and Stochastic Gradient Descent. We achieved better results than the results of the mentioned methods by using RNN (Recurrent Neural Network) with GLOVE (Global Vectors for Word Representation) and achieved a result of 91.04% accuracy.

Benzer Tezler

  1. A comparatıve analysıs of LSTM and XGBoost methods for day ahead electrıcıty prıce forecastıng

    Gün öncesi elektrik fiyatı öngörüsü için LSTM ve XGBoost yöntemlerinin karşılaştırmalı analizi

    CAHİT URAL KÜKNER

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Enerjiİstanbul Teknik Üniversitesi

    Enerji Bilim ve Teknoloji Ana Bilim Dalı

    PROF. DR. AHMET DURMAYAZ

  2. Kripto para fiyatlarının LSTM ve GRU modelleri ile tahmini

    Prediction of crypto money prices with LSTM and GRU models

    ESRANUR DEMİRCİ

    Yüksek Lisans

    Türkçe

    Türkçe

    2021

    İşletmeSüleyman Demirel Üniversitesi

    İşletme Ana Bilim Dalı

    DOÇ. DR. MELTEM KARAATLI

  3. Characterization and modeling of negative-biastemperature instability in 40 NM CMOS technologythrough long short-term memory (LSTM) networks

    Uzun kısa-süreli bellek ağlarıyla (LSTM)40 NM CMOS teknolojisinde negatif-kutuplamasıcaklık kararsızlığının karakterizasyonu ve modellenmesi

    FİKRET BAŞAR GENCER

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Bilim ve Teknolojiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MUSTAFA BERKE YELTEN

  4. Unsupervised video summarization with independently recurrent neural networks and multiple rewards

    Bağımsız özyineli sinir ağları ve çoklu ödüller ile gözetimsiz video özetleme

    GÖKHAN YALINIZ

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. NAZLI İKİZLER CİNBİŞ

  5. Control and system identification of legged locomotion with recurrent neural networks

    Tekrarlayan sinir ağları ile bacaklı lokomosyonun kontrolü ve sistem tanımlanması

    BAHADIR ÇATALBAŞ

    Doktora

    İngilizce

    İngilizce

    2022

    Elektrik ve Elektronik Mühendisliğiİhsan Doğramacı Bilkent Üniversitesi

    Elektrik-Elektronik Mühendisliği Ana Bilim Dalı

    PROF. DR. ÖMER MORGÜL