Malware detection for the android platform using machine learning techniques
Android platformu için makine öğrenmesi teknikleri kullanarak kötücül yazılım tespiti
- Tez No: 522194
- Danışmanlar: DR. ÖĞR. ÜYESİ KORHAN KARABULUT, DR. ÖĞR. ÜYESİ METE EMİNAĞAOĞLU
- Tez Türü: Doktora
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2018
- Dil: İngilizce
- Üniversite: Yaşar Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Mühendislik Bilimleri Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 178
Özet
Android mobil işletim sisteminin, rakiplerine kıyasla sahip olduğu oldukça yüksek toplam pazar payının yanında toplamda sayısal olarak çok daha fazla uygulamaya sahip olması dolayısıyla kötücül yazılımlar tarafından en sık hedef alınan mobil platform olduğu bilinmektedir. Son kullanıcının, tipik güvenlik yetersizliğine bağlı olarak, kötücül yazılımın Google Play Store veya herhangi bir resmi olmayan uygulama mağazasında yayımlanmadan önce tespit edilmesi hayati bir öneme sahiptir. Bu tezde, makine öğrenmesi teknikleri kullanarak yeni bir Android kötücül yazılım tespit metodolojisi yanında yeni bir öznitelik seçim metodolojisi ortaya konmuştur. Bu çalışmada sunulan makine öğrenmesi yaklaşımı, Android uygulamalarından (APK dosyaları) statik olarak çıkarılabilen, izinler (permissions), Uygulama Programlama Arayüzü çağrıları (API calls) ve katar (string) özelliklerini kullanmaktadır. Sunulan özellik seçim metodolojisinde literatürdeki mevcut yöntemlerden farklı olarak, belge sıklığı tabanlı (document frequency-based) bir yöntem tasarlanıp uygulanmıştır. Önerilen yöntem, Android kötücül yazılım örnekleri barındıran iki evrensel temel ölçüt veri kümesi ile test edilmiş ve bazı ikili sınıflandırma algoritmaları yanı sıra bazı topluluk (ensemble) yöntemine dayalı algoritmalar da kullanılarak literatürdeki diğer modeller ve yöntemlere göre daha başarılı sayılabilecek yüksek doğrulukta sonuçlar elde edilmiştir.
Özet (Çeviri)
Android is the mobile operating system most frequently targeted by malware in the smartphone market with a significantly higher total market share in comparison to its competitors in addition to a much higher total number of applications. Detection of malware before it is published on the Google Play Store or any unofficial application market is very important owing to the end users' typical security inadequacy. In this Ph.D. thesis, a novel methodology of feature selection is proposed along with an Android malware detection approach that implements the proposed feature selection methodology. The machine learning approach proposed in this thesis makes use of permissions, API calls, and strings as features, which are statically extractable from the Android executables (APK files). In the proposed feature selection approach, a document frequency-based approach was designed and implemented that differs from the existing methods in the literature. The proposed methodology was tested upon two universal benchmark datasets that contain Android malware samples and promising results were obtained by using several binary classification algorithms and some ensemble learning models.
Benzer Tezler
- Android zararlı yazılım tespit sistemi
Android malware detection system
TÜLAY AVAN
Yüksek Lisans
Türkçe
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolEskişehir Osmangazi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ESRA NERGİS YOLAÇAN
- Hibrit analiz kullanarak android kötücül yazılım aile sınıflandırması
Android malware family classification by using hybrid analysis
ÖMER FARUK TURAN CAVLI
Yüksek Lisans
Türkçe
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DOÇ. DR. SEVİL ŞEN AKAGÜNDÜZ
- Öğrenmeye dayalı istemci ve sunucu tabanlı android kötücül yazılım tespit sistemi
Learning oriented client and server-based android malwaredetection system
ABDULLAH DAĞLIOĞLU
Yüksek Lisans
Türkçe
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi ÜniversitesiBilgisayar Bilimleri Ana Bilim Dalı
DOÇ. DR. İBRAHİM ALPER DOĞRU
- Androıd işletim sistemi için derin öğrenme tabanlı kötü amaçlı yazılım tespit aracı geliştirme
Development of deep learning based malware detection tool for android operating system
MAHMUT TOKMAK
Doktora
Türkçe
2020
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSüleyman Demirel ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ECİR UĞUR KÜÇÜKSİLLE
- Trapdroid: Bare-metal android malware behavior analysis framework
Trapdroid: Zararlı android uygulamalarının gerçek cihazlar üzerinde davranışsal analizi
HALİT ALPTEKİN
Yüksek Lisans
İngilizce
2021
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolSabancı ÜniversitesiBilgisayar Bilimleri ve Mühendisliği Ana Bilim Dalı
PROF. DR. ALBERT LEVİ
PROF. DR. ERKAY SAVAŞ