Süperkritik akışkan ekstraksiyonun matematiksel modelinin sonlu farklar yöntemiyle çözümü
Solution of mathematical model for supercritical fluid extraction with finite difference method
- Tez No: 529846
- Danışmanlar: DR. ÖĞR. ÜYESİ ELİF TEKİN TARIM
- Tez Türü: Yüksek Lisans
- Konular: Kimya Mühendisliği, Matematik, Chemical Engineering, Mathematics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2018
- Dil: Türkçe
- Üniversite: Yıldız Teknik Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Matematik Ana Bilim Dalı
- Bilim Dalı: Matematik Bilim Dalı
- Sayfa Sayısı: 64
Özet
Bilim ve mühendislik alanları için deneyler çok önemli bir yere sahiptir. Bazı deneyler ise hem uzun sürebilir hem de yüksek maliyetli olabilir. Fakat deneysel çalışmalar olmadan, ele alınan problemde deneyin başarılabilirliği ve bazı parametrelerin yaklaşık olarak elde edilmesi hakkında matematiksel modelin çözümü fikir verebilir. Matematiksel model karmaşık bir yapıya sahipse, analitik çözüm bulmak ya zor ya da imkansızdır. Bu aşamada uygulamalı matematikten yararlanılabilir. Uygulamalı matematiğin sayısal çözüm yöntemlerini bilim ve mühendislik alanlarında kullanmak kolaylık sağlayabilir. Bu tezde de bir kimya mühendisliği konusu olan süperkritik akışkan ekstraksiyonu için sayısal çözüm sunmak amaçlanmıştır. Tezde deneysel sonuçları mevcut olan süperkritik akışkan ekstraksiyonunun çözümünde kullanılan matematiksel model bir kısmi diferansiyel denklem sistemine karşılık gelmektedir. Bu sistemin sonlu farklarla çözümü bulunup, var olan deney sonuçlarıyla karşılaştırılarak makul sonuçlara ulaşılmıştır. Çalışma dört bölümden oluşmuştur. İlk bölüm literatür özeti, tezin amacı ve hipotezini kapsamaktadır. Bu bölüm tez çalışmasının başlangıcından sonuna kadar olan literatürlerin açıklanması niteliğindedir. İkinci bölüm,“Süperkritik akışkan ekstraksiyonu nedir?”sorusuna yanıt vermektedir. Bu doğrultuda deney aşamalarından ve matematiksel modelden bahsedilmiştir. Bu bölümün son kısmında ise sayısal çözüme başlayabilmek için matematiksel model boyutsuz hale getirilmiştir. Üçüncü bölümde boyutsuz matematiksel modele karşılık gelen kısmi diferansiyel denklem sisteminin sayısal çözüm aşamalarına yer verilmiştir. Öncelikle çözüm yöntemi olan Crank-Nicolson yönteminden bahsedilmiş, daha sonra bu yöntemin yardımıyla kısmi diferansiyel denklem sisteminde türevler yerine sonlu fark ifadeleri yerlerine konularak denklemler yeniden düzenlenmiştir. Böylece cebirsel denklem sistemi elde edilmiş ve bu sistem Thomas algoritması yöntemi kullanılarak çözülmüştür. Dördüncü bölüm sayısal sonuçların incelendiği kısımdır. Öncelikle sıcaklık, basınç, çözücü debisi ve tanecik boyutlarına göre deneysel ve sayısal sonuçlar grafiklerle verilmiştir. Daha sonra sayısal sonuçlar deneysel sonuçlar ile karşılaştırılmıştır. Sonuçlara ulaşıldıktan sonra katsayılar arasındaki ilişkiler incelenmiştir. Son bölümde de tezden çıkan sonuçlar ve öneriler kısmına yer verilmiştir.
Özet (Çeviri)
Experiments for science and engineering have a very important place. Some experiments can be very long and costly. But without the experimental studies of the problem, by solving the generated mathematical model it can be get some idea about the success of the experiment and the approximate obtaining of some parameters. If the mathematical has a complex structure, it is difficult or impossible to find an analytical solution. Applied mathematics is used at this stage. It can provide ease of use of numerical methods in science and engineering fields. In this thesis, it is aimed to present a numerical solution for supercritical fluid extraction which is a chemical engineering subject. The mathematical model used in the solution of supercritical fluid extraction which has experimental results in the thesis corresponds to a system of partial differential equations. Reasonable results have been achieved by solving the system with finite differences and comparing with the existing experimental results. The study consists of four chapters. The first chapter covers literature summary, the aim and hypothesis of the thesis. This chapter is an explanation of the literature from the beginning to the end of the thesis study. The second chapter responds the question of“What is supercritical fluid extraction?”. Accordingly, experimental stages and mathematical model are mentioned. In the last part of this chapter, mathematical model has been dimensionless in order to start a numerical solution. Numerical solution stages of the system of partial differential equations corresponding to dimensionless mathematical model are given in the third chapter. Firstly, Crank-Nicolson method which is the solution method has been mentioned then, the equations are replaced by finite difference expressions instead of derivatives in the system of partial differantial equations with the help of this system. Thus, algebraic equation system has been obtained and this system is solved using the Thomas algorithm method. The fourth chapter is section where numerical results are examined. Firstly, experimental and numerical results are given by using graphs according to temperature, pressure, solvent flow rate and partical size. Then, numerical results were compared with experimental results. After reaching the results, the relations between the coefficients were examined. The results and recommendations section of the thesis are given in the last section.
Benzer Tezler
- Mathematical modeling of supercritical fluid extraction of biomaterials
Biyomalzemelerin süperkritik akışkanlarla ekstraksiyonunun matematiksel modellenmesi
HALİL İBRAHİM ÇETİN
Doktora
İngilizce
2007
Gıda MühendisliğiOrta Doğu Teknik ÜniversitesiGıda Mühendisliği Ana Bilim Dalı
DOÇ. DR. MERYEM ESRA YENER
DOÇ. DR. HAKAN IŞIK TARMAN
- Kirlilik oluşturan atık deniz fanerogamlarının süperkritik CO2 ekstraksiyonunun matematiksel modellemesi ve rafinat fazdaki biyokütleden biyoetanol eldesi
Mathematical modeling for supercritical fluid extraction of waste marine pollutant phanerogams and investigation of bioethanol production from biomass in raffinate phase
MÜGE PİLAVTEPE
Yüksek Lisans
Türkçe
2012
BiyomühendislikEge ÜniversitesiBiyomühendislik Ana Bilim Dalı
DOÇ. DR. ÖZLEM YEŞİL ÇELİKTAŞ
- Süperkritik akışkan ekstraksiyonunda bir tasarım çalışması
A Design study in süpercritical fluid extraction
ALTUĞ BÜLENT ERBİL
Yüksek Lisans
Türkçe
2001
Kimya MühendisliğiYıldız Teknik ÜniversitesiKimya Mühendisliği Ana Bilim Dalı
PROF. DR. SALİH DİNÇER
- Optimization of cultivation conditions and engineering by random mutagenesis for high lipid production in Schizochytrium sp. S31
Schizochytrium sp. S31'in üretim koşullarının iyileştirilmesi ve rastlantısal mutasyon ile geliştirilmesiyle yüksek oranda lipid eldesi
NURCAN VARDAR
Doktora
İngilizce
2016
Biyoteknolojiİstanbul Teknik ÜniversitesiMoleküler Biyoloji-Genetik ve Biyoteknoloji Ana Bilim Dalı
DOÇ. DR. NEVİN GÜL-KARAGÜLER
PROF. MELEK TÜTER
- Kırmızı biber salçası üretimi artıklarından ultrason ve süperkritik akışkan ekstraksiyon yöntemleri ile antioksidan eldesinin optimizasyonu
Optimization of ultrasound and super critical fluid extraction of antioxidant compounds from red pepper paste production by-products
ÖZGE TUNA
Yüksek Lisans
Türkçe
2013
Gıda MühendisliğiOndokuz Mayıs ÜniversitesiGıda Mühendisliği Ana Bilim Dalı
DOÇ. DR. İLKAY KOCA
DR. İNCİNUR HASBAY