Geri Dön

Word sense disambiguation, named entity recognition, and shallow parsing tasks for Turkish

Türkçe için kelime anlamlandırma, adlandırılmış varlık tanıma ve sığ ayrıştırma

  1. Tez No: 538624
  2. Yazar: OZAN TOPSAKAL
  3. Danışmanlar: PROF. DR. OLCAY TANER YILDIZ
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: İngilizce
  9. Üniversite: Işık Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 60

Özet

İnsanların birbiriyle diyalogları cümlelerle olmaktadır. Cümlenin anlaşılması, kelimelere yakınsayarak, onları ayrıştırarak ve cümle içerisinde kullanılan ideal anlamlarını bularak olur. Doğal Dil İşleme'nin nihai amacı cümleyi anlamaktır. Bu tezin konusu üç alandan oluşmaktadır: Adlandırılmış Varlık Tanıma, Sığ ayrıştırma ve Kelime Anlamlandırma'dır. ``İnsan``, ``yer``, ``zaman`` gibi varlıkları öğrenebilen Doğal Dil Geliştirme algoritmalarına Adlandırılmış Varlık Algoritmaları denir. Cümleleri ayrıştırma Doğal Dil İşleme'nin en büyük meydan okumalarından birisidir. Zaman ve doğruluğu arttırma ters orantılı olduğundan dolayı Sığ Ayrıştırma algoritmaları bu konudaki en iyi çözümlerden biridir. Bir çok kelimenin birden çok anlamı vardır. Cümle içinde kullanılan kelimenin doğru anlamını algılamak zorlu bir problemdir. Kelime Anlamlandırma literatüründe bu problemi çözümlemek için bir çok algoritma mevcuttur. Bu tezde bu üç alan için makine öğrenimi algoritmalarıyla çözümler üretilmeye çalışılmıştır. Deneyler 9,557 cümlelik bir veri kümesi üzerinde yapılmıştır.

Özet (Çeviri)

People interactions are based on sentences. The process of understanding sentences is thru converging, parsing the words and making sense of words. The ultimate goal of Natural Language Processing is to understand the meaning of sentences. There are three main areas that are the topics of this thesis, namely, Named Entity Recognition, Shallow Parsing, and Word Sense Disambiguation. The Natural Language Processing algorithms that learn entities, like person, location, time etc. are called Named Entity Recognition algorithms. Parsing sentences is one of the biggest challenges in Natural Language Processing. Since time efficiency and accuracy are inversely proportional with each other, one of the best ideas is to use shallow parsing algorithms to deal with this challenge. Many of words have more than one meaning. Recognizing the correct meaning that is used in a sentence is a difficult problem. In Word Sense Disambiguation literature there are lots of algorithms that can help to solve this problem. This thesis tries to find solutions to these three challenges by applying machine learning trained algorithms. Experiments are done on a dataset, containing 9,557 sentences.

Benzer Tezler

  1. Helping metonymy recognition and treatment through named entity recognition

    Adlandırılmış varlık ile ad aktarması çözümleme

    HATİCE BURCU KÜPELİOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2016

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGalatasaray Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. TANKUT ACARMAN

  2. Verb sense disambiguation (VSD) in the Kyrgyz corpus and the problems of their morphological tagging

    Kırgız derleminde fiil anlamının belirsizliği giderme (VSD) ve onların morfolojik etiketleme sorunları

    AİZAT KADYRBEKOVA

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Mütercim-TercümanlıkKırgızistan-Türkiye Manas Üniversitesi

    Mütercim Tercümanlık Ana Bilim Dalı

    DOÇ. DR. AİDA KASİEVA

  3. Çizgelerde etiket yayılımı ile belgelerin yarı eğitimli sınıflandırılması

    Semi-supervised classification of documentsvia label propagation in graphs

    GÖKHAN KOCAMAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolMarmara Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. MURAT CAN GANİZ

  4. Aotomatic wordnet construction using wikipedia data

    Vikipedi verilerini kullanarak otomatik olarak wordnet oluşturmak

    FARİD HAZİYEV

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolHacettepe Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. GÖNENÇ ERCAN

  5. Bir kelime anlamı belirginleştirme modülü geliştirilmesi

    Developing a word sense disambiguation module

    ÖZLEM AYDIN

    Doktora

    Türkçe

    Türkçe

    2011

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTrakya Üniversitesi

    Bilgisayar Bilimleri Ana Bilim Dalı

    DOÇ. DR. YILMAZ KILIÇASLAN