Geri Dön

Giyilebilir elektronik uygulamalara yönelik yüksek sıcaklıklara dayanıklı veri iletim kalitesi yüksek e-tekstil yapılarının geliştirilmesi

Development of high-temperature resistant e-textile structures with high data transfer quality for wearable electronic applications

  1. Tez No: 541862
  2. Yazar: ERCAN KARABULUT
  3. Danışmanlar: DOÇ. DR. SENEM KURŞUN BAHADIR
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Tekstil ve Tekstil Mühendisliği, Electrical and Electronics Engineering, Textile and Textile Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: Türkçe
  9. Üniversite: İstanbul Teknik Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Tekstil Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 153

Özet

Bu çalışmanın amacı giyilebilir elektronik uygulamalarına yönelik yüksek sıcaklıklara dayanıklı e-tekstil yapılarının geliştirilmesidir. Bu çalışmada yüksek sıcaklığa dayanıklı olan farklı tipteki kumaşların, e-tekstil yapılarındaki elektronik bileşenler arası veri transfer kalitesine etkisi araştırılmış ve buna bağlı olarak giyilebilir elektroniklere yönelik yüksek sıcaklıklara uygun e-tekstil yapısı belirlenmiştir. Aramid takviyeli alüminyum laminat, paraaramid - metaaramid, viskoz rayon, cam elyaf, PBI içerikli altı farklı kumaş, farklı tipteki iletken iplikler (çelik, bakır, gümüş kaplı) ile sandviç yapı formunda e-tekstil devre hattı oluşturmak üzere birleştirilmiştir. Numuneler, ultrasonik kaynak dikiş, sıcak hava kaynak dikiş ve konvansiyonel dikiş tekniği kullanılarak oluşturulmuştur. Numunelerin yüksek sıcaklık altındaki performans özellikleri TS EN ISO 11612 standardına (Koruyucu giyecekler - Isı ve aleve karşı koruyucu giyecek) göre sınırlandırılmış alev sıçraması (TS EN ISO 15025), alevli ısı transferi (EN ISO 9151), radyan ısı testleri (EN ISO 6942) uygulanarak test edilmiştir. Numunelerin elektriksel özelliklerinden iletkenlik multimetre kullanılarak, sinyal kalitesi ise osiloskop kullanılarak tespit edilmiştir. Oluşturulan e-tekstil yapılarının ısıl testler öncesi ve sonrası lineer direnç değerleri ve sinyal kalitesi karşılaştırılmış, ısıl testler sonucunda kumaş türlerinin ve iplik türlerinin ortalama mutlak lineer direnç ve veri iletim kalitesi değişimleri açısından birbirlerinden anlamlı derecede farklı olup olmadıkları varyans analizi (ANOVA) yöntemiyle araştırılmıştır. Anlamlı farklılık tespit edildiği durumlarda bu farklılığın hangi gruptan veya gruplardan kaynaklandığının tespitinde çoklu karşılaştırma yöntemi olan“Bonferroni”,“Scheffe”veya“Tamhane”test istatistiği uygulanmıştır. Isıl testler sonucunda bazı e-tekstil yapılarında gümüş kaplı iletkenlik ipliklerde kopmalar meydana geldiği, genel olarak gümüş kaplı iletken ipliklerin, bakır ve çelik iletken ipliklerden daha düşük performans gösterdiği tespit edilmiştir. Ayrıca nonwoven yüzeye lamine edilmiş alüminize kumaş numunesinin, diğer kumaşlardan oluşan numunelerden iletkenlik ve veri iletim kalitesi açısından daha yüksek performans gösterdiği istatistiksel olarak saptanmıştır. Sonuçta, yüzey görünüşü düzgün, yüksek sıcaklıklara dayanıklı ve veri iletim kalitesi yüksek fonksiyonel bir e-tekstil yapısı geliştirilmiştir. Geliştirilen e-tekstil yapısının, giyilebilir teknolojiler, teknik tekstiller, askeri giysiler, koruyucu giysiler ve uzay kıyafetleri uygulamalarında yer alabileceği öngörülmektedir.

Özet (Çeviri)

In recent years, new and practical products have emerged to meet user demands with rapid development in science and technology. Electronic textiles, which are formed by the combination of electronic industry and textile science, meet the needs of people in different fields such as health, military, space, and medicine. In order to obtain e-textile structures and to develop new technologies in this field, scientists working in different disciplines ranging from polymer chemists to physicists, from textile engineers to bioengineers are working together. The e-textile structure is different from traditional electronic systems because it is an electronic system that is woven, knitted or incorporated into the composite fabric. The electrical and physical properties of electronic textiles work symbiotically and affect the functions and properties of each other. Electronic textiles can include a variety of electronic components such as sensors, video cameras, microprocessors, actuators, batteries. Recently, there has been a growing awareness of emergency situations involving large numbers of civilians in large populated areas. Professional rescue teams should minimize their risks while maximizing their effectiveness in performing their duties in scenarios such as major fires, earthquakes, floods, terror incidents or major industrial accidents. Along with the political supports provided within this scope, further support studies have been initiated to monitor and coordinate the activities of emergency support personnel against catastrophic events continuously. In these scenarios, with the emergence of wearable electronic devices, developments in information and communication technologies play a primary role. With the development of electronic textiles, information infrastructures are fully integrated into clothes that collect, process, store and transfer information about the user and the surrounding environment. In this study, it is aimed to develop e-textile structures with high data communication quality which are resistant to high temperatures for wearable electronics applications. Heat and flame protection textile theories were examined and the parameters such as melting temperature, pyrolysis temperature, combustion temperature and limit oxygen index (LOI) values were evaluated. Based on these parameters, six different fabrics were determined. These fabrics are made of woven, knitted and nonwoven based aramid reinforced aluminum laminate, aramid, glass fibre, viscous rayon and PBI fibers. The fabrics are prepared in various sizes according to the test methods specified in TS EN ISO 11612 (Protective clothing - clothing to protect against heat and flame). The samples are 200x160 mm according to ISO 15025 (Protective clothing -- Protection against flame -- Method of test for limited flame spread) standard, 140x140 mm according to EN ISO 9151(Protective clothing against heat and flame -- Determination of heat transmission on exposure to flame) and 230x70 mm according to EN ISO 6942 (Protective clothing -- Protection against heat and fire -- Method of test: Evaluation of materials and material assemblies when exposed to a source of radiant heat) standard. Six different fabrics, which are resistant to high temperatures, are combined with different types of conductive yarns (steel, copper, silver coated) to form an e-textile circuit line in sandwich form. Three different sewing machines were used to combine conductive yarns with outer fabrics. The first is the ultrasonic welding sewing machine. Three different parameters such as power, pressure and velocity were used for combining the lining fabric with the outer fabric by ultrasonic welding. By changing the parameter values, an electronic textile structure was tried to be formed by ultrasonic welding. In the case of stable bonding between the layers, it was determined that the aramid-viscous blended liner was deformed. For this reason, the ultrasonic welding technique has been eliminated in the study. The other method is the hot air welding seam technique. Although working with fabrics in different temperatures and different feed speed, short circuit due to the inability to be an orientated structure formed in the structure of the conductive yarn and sudden deviations in the resistance occurred. For this reason, the hot-air welding method has been eliminated. As an alternative method, the zigzag sewing machine was used to fix the conductive yarn to the lining fabric. For each test sample, conductive yarns prepared at the relevant length are fixed to the area marked on the liner by zigzag sewing method. After the conductive yarn liner is fixed to the fabric, the liner fabric and the outer fabric are sewn together, with the surface of the conductive yarn corresponding to the rear surface of the outer fabric. The sandwich structure is formed by this joining and the conductive yarns are prevented from direct contact with the outer surface. Operating characteristics of e-textile samples in terms of high-temperature resistance (limited flame spread, convective heat transfer, radiant heat) and electrical properties (conductivity and signal quality) were tested. As a result of the limited flame splash test, all fabrics were at A1 protection level and all fabrics were at B1 protection level as a result of convective heat test. In addition, as a result of radiant heat test, the protection level of aluminized fabrics was higher than PBI and viscous fabrics. Linear resistance values and signal quality of e-textile structures were compared before and after thermal tests and variance analysis (ANOVA) was used to determine whether the fabric types and yarn types had a significant difference between the average absolute linear resistance and data transmission quality. In cases where significant differences were detected, multiple comparison methods (Bonferroni, Scheffe or Tamhane test statistic) was applied in order to determine which group or groups were caused by this difference. As a result of thermal tests, it has been determined that in some e-textile structures, silver-plated conductivity yarns have ruptured and generally silver-coated conductive yarns show lower performance than copper and steel conductive yarns. Particularly in limited flame spread and convective heat test, the rate of loss data on silver yarns is over 30%. There was a reduction in the data transmission quality of conductive yarns after thermal tests for all yarn types and fabric types. When the signal-to-noise ratio (SNR) according to the yarn types is examined, it is understood that the average of SNR values for all yarns is above 40. This is the amount that can be considered successful in terms of data transmission quality. However, after all thermal tests, the data transmission quality decreased by approximately 10% on average. Compared to the SNR value of the fabric types, the aluminized fabric laminated to the knitted aramid fabric showed significant performance loss after the limited flame spread and convective heat tests. In addition, it was statistically determined in the conductivity and high data transfer quality measurements, the sample of aluminized fabric laminated to nonwoven showed higher performance than the samples manufactured using other fabrics. As a result, a highly functional e-textile structure that is resistant to high temperatures with smooth surface appearance and high data transmission quality has been developed. It is proposed that the developed e-textile structure is promising for the applications of wearable technologies, technical textiles, military clothes, protective clothing and spacesuits.

Benzer Tezler

  1. Enerji depolamada yenilikçi karbon yapılı esnek yüzeylerin üretimi ve analizi

    Production and analysis of novel carbon structured flexible surfaces for energy storage applications

    ESRA ŞERİFE KILIÇ

    Doktora

    Türkçe

    Türkçe

    2024

    Tekstil ve Tekstil Mühendisliğiİstanbul Teknik Üniversitesi

    Tekstil Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ DEMİR

  2. Giyilebilir boya ile duyarlaştırılmış güneş pili üretimi ve uygulamaları

    Wearable dye sensitized solar cell production and applications

    SERKAN YILMAZ YETKİN

    Yüksek Lisans

    Türkçe

    Türkçe

    2023

    Makine MühendisliğiVan Yüzüncü Yıl Üniversitesi

    Makine Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ HALİL İBRAHİM YAVUZ

  3. Development of stretchable conductive hybrid yarn for e-textiles soft sensors applications

    Gerilebilir iletken hibrit iplik geliştirilmesi e-tekstil yumuşak sensör uygulamaları için

    IBRAHIM ADEL KHAMIS AHMED

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Tekstil ve Tekstil Mühendisliğiİstanbul Teknik Üniversitesi

    Tekstil Mühendisliği Ana Bilim Dalı

    DOÇ. DR. ÖZGÜR ATALAY

  4. Graphene conductive inks for an effective textile based respiratory sensor system

    Tekstil esaslı solunum sensör sistemi için grafen iletken mürekkepler

    KIVANÇ ÖZIŞIK

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilim ve Teknolojiİstanbul Teknik Üniversitesi

    Uçak ve Uzay Mühendisliği Ana Bilim Dalı

    PROF. DR. HÜLYA CEBECİ

  5. Mobil uygulamalarda kişisel verilerin korunması

    Protection of personal data in mobile applications

    HABİBE ESRA ER

    Yüksek Lisans

    Türkçe

    Türkçe

    2020

    Hukukİstanbul Bilgi Üniversitesi

    Bilişim ve Teknoloji Hukuku Ana Bilim Dalı

    PROF. DR. AHMET DENKER