Geri Dön

Investigation of single step sintering and performance of planar and wavy single chamber solid oxide fuel cells

Başlık çevirisi mevcut değil.

  1. Tez No: 544614
  2. Yazar: YUNUS SAYAN
  3. Danışmanlar: Dr. HOUZEN WU
  4. Tez Türü: Doktora
  5. Konular: Kimya Mühendisliği, Metalurji Mühendisliği, Otomotiv Mühendisliği, Chemical Engineering, Metallurgical Engineering, Automotive Engineering
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2018
  8. Dil: İngilizce
  9. Üniversite: Loughborough University
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 291

Özet

Özet yok.

Özet (Çeviri)

Single step co-sintering is proposed as a method to minimise the time and cost of fabricating solid oxide fuel cells (SOFCs). Such a methodology is attractive but challenging due to the differing sintering behaviours and thermal mismatch of the constituent materials of the anode, cathode and electrolyte in solid oxide fuel cells. As a result it is likely that compromises are made for one layer with respect to optimising another. The single chamber solid oxide fuel cell (SC-SOFC) has not seen widespread adoption due to poor selectivity and fuel utilisation, but relaxed some of the stringent SOFC requirements such as sealing, and the need for a dense electrolyte layer. Thus, to initiate the study into single step co-sintering, the single chamber SOFC is earmarked as the first candidate. The effect of single step cosintering on cell performance is also an attractive area to investigate. Therefore, in this study, a new co-sintering process (single step co-sintering) was applied to fabricate three different types (in terms of the supporting structure) of planar SC-SOFCSs (the anode, cathode and electrolyte supported planar cells) and anode supported wavy types of SC-SOFC in order to reduce fabrication cost and time owing to effective fabrication process. In addition, their performances were tested to establish functionality of the sintered specimens as working electrochemical cells as well as to investigate the maximum performance possible with these cells under single chamber conditions. Moreover, it is also aimed to improve the performance of SC-SOFCs by extending TPB (Triple phase boundary) via wavy type. This study presents a single step co-sintering manufacturing process of planar and wavy single chamber solid oxide fuel cells with porous multilayer structures, consisting of NiO-CGO, CGO and CGO-LSCF as anode, electrolyte and cathode respectively. Pressure of 2 MPa, with the temperature at 60˚C for 5 minutes, was deemed optimal for the hot pressing of these layers. The best result of sintering profile was obtained with heating rate of 1˚C min-1 to 500˚C, 2˚C min-1 to 900˚C and 1˚C min-1 to 1200˚C with 1 hour dwelling; the cooling rate was 3˚C min-1. Hence anode supported SC-SOFC (thickness: 200:40:40 μm, thickness ratio: 10:2:2, anode (A): electrolyte (E): cathode (C)) was fabricated via a single co-sintering process, albeit with curvature formation at edges. Its performance was investigated in methane-oxygen mixtures at a temperature of 600˚C. Maximum open circuit voltage (OCV) and power density of the anode supported planar cell were obtained as 0.69 V and 2.83 mW cm-2, respectively, at a fuel-oxygen ratio of 1. Subsequently, anode thickness was increased to 800 μm and electrolyte thickness was reduced 20 μm (thickness ratio of cell 40:1:2) to obtain curvature-free anode-supported SOFCs with the help of a porous alumina cover plate placed on the top of the cell. The highest power density and OCV obtained from this cell was 30.69 mW cm-2 and 0.71 V, respectively, at the same mix ratio. In addition, the maximum residual stresses between cathode end electrolyte layers of anode supported cells after sintering were investigated using the fluorescence spectroscopy technique. The total mean residual stresses along the x-direction of the final anode supported planar cell after sintering were measured to range from -488.688 MPa to -270.781 MPa. Determination of optimum thickness and thickness ratio of the cell with the defined ideal hot pressing and sintering conditions for single step co-sintering were carried out for cathode and electrolyte supported planar cells using similar fabrication processes. Their performance changes with thickness ratio were examined. The results show that the cathode and electrolyte supported planar cells can be obtained successfully via single step co-sintering technique with the help of alumina cover plates, as with the anode supported cell. In addition, an anode supported wavy SC-SOFC was fabricated via single step co-sintering and its performance was also investigated. The maximum power density and OCV from the final curvature free cathode supported planar cell (thickness: 60:20:800 μm, thickness ratio: 3:1:20, A:E:C) was measured to be 1.71 mW cm-2 and 0.20 V, respectively, at a fuel-oxygen ratio of 1.6. Likewise, the maximum OCV and power density were found to be 0.55 V and 29.39 mW cm-2, respectively, at a fuel-oxygen ratio of 2.6, for the final electrolyte supported curvature free planar cell (thickness: 60:300:40 μm, thickness ratio: 3:15:2, A:E:C). Furthermore, a maximum OCV of 0.43 V and power density of 29.7 mW cm-2 were found from the final anode supported wavy cell (thickness: 800:20:40 μm, thickness ratio: 40:1:2, A:E:C) at a fuel-oxygen ratio of 1. In essence, this study can be divided into five chapters. The first chapter addresses the overview of the research background, problem statement, aims and objective of this study as well as that of novelty and impact. In the second chapter, fundamental information is provided regarding SOFCs and SC-SOFCs in terms of working principles, main components including electrodes electrolytes, advantages and disadvantages, types, material used for each cell components, losses in the system, and so forth. Moreover, the second chapter also contains essential sintering information in order to understand how to approach sintering of ceramics or cermet to fabricate SC-SOFCs. The overall methodology of this study is explained in detail in the third chapter while experimental works are described in the chapter 4, chapter 5, chapter 6, chapter 7 and chapter 8. Chapter 5 also contains background for the fluorescence spectroscopy and a modelling technique for residual stress measurement between ceramic layers. The results of experiments with discussion session are also in the same chapter. The last chapter presents conclusions and the possible routes for future works of the study.

Benzer Tezler

  1. Transparan AlON seramiklerinin SPS ile üretimi ve geliştirilmesi, farklı katkıların transparanlık ve mekanik özellikler üzerindeki etkilerin incelenmesi

    Production and development of transparent AlON ceramics with SPS, investigation of the effects of different additives on transparency and mechanical properties

    DEMET AYDOĞMUŞ

    Doktora

    Türkçe

    Türkçe

    2024

    Metalurji Mühendisliğiİstanbul Teknik Üniversitesi

    Metalurji ve Malzeme Mühendisliği Ana Bilim Dalı

    PROF. DR. FİLİZ ŞAHİN

  2. Investigation of infrared phosphorescence properties of chromium doped lanthanum gallogermanate phosphors sythesized by sol-gel method

    Sol-gel yöntemi ile sentezlenen krom katkılı lantan galogermanat fosforlarının kızılötesi fosforesans özelliklerinin incelenmesi

    BURCU CAN

    Yüksek Lisans

    İngilizce

    İngilizce

    2020

    Metalurji Mühendisliğiİstanbul Teknik Üniversitesi

    Metalurji ve Malzeme Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ NURİ SOLAK

  3. 31CrMo12 ön alaşımlı T/M çeliklerde boro-sinterleme işlem parametrelerinin belirlenerek tribolojik davranışlarının incelenmesi

    Investigation of tribological behavior of 31CrMo12 prealloyed P/M steels by determining boro-Sintering process parameters.

    HASAN DURAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Metalurji MühendisliğiPamukkale Üniversitesi

    Metalurji ve Malzeme Mühendisliği Ana Bilim Dalı

    DOÇ. DR. SİNAN AKSÖZ

    DR. ÖĞR. ÜYESİ ÖZER PAMUK

  4. Sinterleme tekniğiyle üretilen Ni3Al tabanlı süperalaşımların yapısal parametrelerinin ve γ-ışını soğurma yeteneklerinin araştırılması

    Investigation of the structural parameters and γ-ray absorption abilities of Ni3Al-based superalloys produced by sintering technique

    MERVE DURDAĞ

    Yüksek Lisans

    Türkçe

    Türkçe

    2024

    Fizik ve Fizik MühendisliğiAtatürk Üniversitesi

    Fizik Ana Bilim Dalı

    DOÇ. DR. ERDEM ŞAKAR

  5. Difüzyon bağlı demir esaslı tozlarından üretilen T/M çeliklerin mikroyapı ve mekanik özelliklerine farklı ara kritik tavlama ısıl işlemlerin etkilerinin araştırılması

    Investigation of different intercritically annealing heat treatment on microstructure and mechanical properties of P/M steels produced from diffusion bonded ferrous powders

    MUSTAFA TÜRKAN

    Yüksek Lisans

    Türkçe

    Türkçe

    2010

    Metalurji MühendisliğiGazi Üniversitesi

    Metal Eğitimi Ana Bilim Dalı

    YRD. DOÇ. DR. AHMET GÜRAL