Yapay zeka ile meme kanseri lenf nodu analizi
Breast cancer lymph node analysis using artificial intelligence
- Tez No: 547247
- Danışmanlar: DR. ÖĞR. ÜYESİ ATINÇ YILMAZ
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: Türkçe
- Üniversite: Beykent Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Bilgisayar Mühendisliği Bilim Dalı
- Sayfa Sayısı: 90
Özet
Dünya' da en çok görülen kanser türünün akciğer kanseri olmasına rağmen kadınlarda en çok görülen kanser türü meme kanseridir. Meme kanserinde, hastalığın evresi ve buna bağlı olarak hangi tedavi yönteminin kullanılacağı konusunda birçok olgunun analiz edilmesinin yanında koltuk altı lenf nodu durumu önem taşımaktadır. Meme kanserinde koltuk altı lenf durumunun varlığı vücudun diğer organlarına yayılma riskini arttırmaktadır. Cerrahi işlemler gerektiren bu durum hastalığın ciddiyetini önemli kılmaktadır. Yapılan bu çalışmada İstanbul Gaziosmanpaşa Taksim Eğitim ve Araştırma Hastanesi'nden alınan meme kanseri olan hastaların koltuk altı lenf durumunu içeren klinik ve patolojik verileri, Yapay Zeka yöntemlerinden olan K-Means, Uyarlamalı Sinirsel Bulanık Çıkarım Sistemi, Genetik Algoritma ve Yapay Sinir Ağları kullanılarak modeller oluşturulmuş ve meme kanseri lenf nodu durumu teşhisi için kullanılabilirliği analiz edilmiştir. Modellerin eğitimi için belirtilen yöntemler ile farklı iki hibrit model oluşturulmuştur. Farklı özelliklere sahip bu iki yöntemin verimliliğini görebilmek adına temel bir Yapay Sinir Ağı kullanılmıştır. Tıbbi olarak güvenilirliğini test etmek amacıyla bu çalışmada oluşturulan modellerin performanslarının karşılaştırılması tanı testleri ve ROC eğrisiyle ortaya konulmuştur.
Özet (Çeviri)
Despite the fact that the most frequent type of cancer in the world is lung cancer the most frequent type of cancer in women is breast cancer. In breast cancer, the stage of the disease and accordingly along with the analysis of many cases concerning the method of treatment method to be used, the posture of armpit lymph node is of importance. The existence of armpit lymph case increases the risk of metastasis to other organs of the body in breast cancer. This condition, which requires surgical procedures, makes the seriousness of the disease important. In this study, clinical and pathological data, including armpit lymph case gathered from breast cancer patients in İstanbul Gaziosmanpaşa Taksim Education and Research Hospital, models were built by using k-means which is an Artificial Intelligence method, Adaptive Neuro Fuzzy Inference System, Genetic Algorithm and Artificial Neural Networks and it was analyzed for the usability of diagnosis of breast cancer lymph case. Two different hybrid models were formed using specified methods for the training of the models. A basic artificial neural network was used in order to see the efficiencies of these two methods claiming different characteristics. In an attempt to test the medical authenticity, comparison of the performance models that were created in this study was introduced using diagnostic tests and ROC Curve.
Benzer Tezler
- Meme kanseri hastalarında aksiller lenf nodu metastazının değerlendirilmesinde MRI AND F-18 FDG-PET/BT görüntüleri kullanılarak eğitilen yapay zeka modelinin tanısal performansı
Diagnostic Performance of the Deep Learning Method Trained Using MRI AND F-18 FDG-PET/BT Images in the Evaluation of Axillary Lymph Node Metastasis in Breast Cancer Patients
YAHYA SELÇUK AYDEDE
Tıpta Uzmanlık
Türkçe
2024
Genel CerrahiSağlık Bilimleri ÜniversitesiGenel Cerrahi Ana Bilim Dalı
DOÇ. DR. ÜMİT TURAN
- Meme kanserinin iyi huylu veya kötü huylu durum tespitinde derin öğrenme modellerinin kullanılması
Using deep learning models for breast cancer detection of become or violent conditions
FEYZİ FERAT ATEŞ
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBatman ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ ABİDİN ÇALIŞKAN
- Akciğer metastazlarında primer tümör kaynağının yapay zeka algoritmaları ile değerlendirilmesi
Evaluation of primary tumor origin in lung metastases with artificial intelligence algorithms
ABDUSSELİM ADİL PEKER
Tıpta Uzmanlık
Türkçe
2021
Radyoloji ve Nükleer TıpBezm-i Alem Vakıf ÜniversitesiRadyoloji Ana Bilim Dalı
PROF. DR. ALPAY ALKAN
DR. ÖĞR. ÜYESİ MEHMET ALİ GÜLTEKİN
- Yapay zekâ yöntemleri ile veri analizi ve tıbbi teşhis için uzman sistem geliştirme
Developing expert system for medical diagnosis and data analysis with artificial intelligence methods
ALİ KELEŞ
Doktora
Türkçe
2009
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolAtatürk ÜniversitesiMatematik Ana Bilim Dalı
DOÇ. DR. UĞUR YAVUZ
- An artificial intelligence approach for breast cancer treatment
Meme kanseri tedavisinde yapay zeka yaklaşımı
TUĞÇE BELDEK
Doktora
İngilizce
2024
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik Üniversitesiİşletme Mühendisliği Ana Bilim Dalı
PROF. DR. HATİCE CAMGÖZ AKDAĞ