Modal identification of structures by using Bayesian statistics
Yapıların Bayezyan istatistikleri ile modal tanılaması
- Tez No: 563611
- Danışmanlar: DOÇ. DR. GÜRSOY TURAN
- Tez Türü: Doktora
- Konular: İnşaat Mühendisliği, Civil Engineering
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: İngilizce
- Üniversite: İzmir Yüksek Teknoloji Enstitüsü
- Enstitü: Mühendislik ve Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: İnşaat Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 176
Özet
Bayezyan olsasılıksal yaklaşımları, inşaat mühendisliği yapılarının sağlığının izlemesinde, geçen on yıllar boyunca kayda değer bir ilgi kazanmıştır. Mevcut Operasyonel Modal Analiz (OMA) yöntemleriyle karşılaştırıldığında Bayezyan Operasyonel Modal Analiz (BAYOMA) yöntemleri, belirli bir sonuç yerine en olası değer ve bu değerin belirsizliğini içeren olasılıksal bir aralık belirler. Bu nedenle, BAYOMA'nın en önemli farkı belirsizlikleri tanımlama kabiliyetinde yatmaktadır. Böylece, ölçülen bir yapının modal parametreleri, çeşitli durumlara göre (örneğin tekil ölçüm grubu, iyi ayrılmış ve/veya çakışan modlar, çoklu ölçüm grupları gibi) bir olasılık temelinde belirlenebilir. Ayrıca, incelenen yapının sonlu eleman modeli, modal tanımlama prosedüründen elde edilen sonuçlar kullanılarak, bir Bayezyan yaklaşımıyla da güncellenebilir. Bayezyan Spektral Yoğunluk Yaklaşımı (BSDA) ve Bayezyan Hızlı Fourier Dönüşüm Yaklaşımı (BFFTA) gibi bazı etkili BAYOMA yöntemleri, son yirmi yıl boyunca çeşitli araştırmacılar tarafından sunulmuştur. Etkili ve hızlı çözüm prosedürlerine rağmen, mevcut yöntemlerde üstesinden gelinmesi gereken bazı kritik sorunlar da mevcuttur. Bu sorunların birçoğu, özellikle sonsal (posterior) belirsizliklerin belirlenmesinde yatmakta veya çakışan modlar ya da çoklu ölçüm grupları bulunması gibi bazı özel durumlarda ortaya çıkmaktadır. Literatürde, yukarıda belirtilen sorunlara yönelik çözümler çeşitli araştırmacılar tarafından sunulmuştur. Mevcut bilgiler ışığında, bu çalışma BAYOMA ve Bayezyan Model Güncelleme (BMU) için bir hesap çerçevesi sunmaktadır. Mevcut yöntemlerde bazı iyileştirmelere ek olarak, BAYOMA ve BMU için yeni ve alternatif yaklaşımlar sunulmaktadır. Elde edilen sonuçlara göre, tanılanan modal parametrelerin ve güncellenmiş sonlu eleman modellerinin kalitesinin, önerilen hesap prosedürü ile önemli ölçüde arttığı görülmektedir.
Özet (Çeviri)
Bayesian Probabilistic approaches in the health monitoring of civil engineering structures has gained remarkable interest during past decades. When compared to the available Operational Modal Analysis (OMA) methods, Bayesian Operational Modal Analysis (BAYOMA) determines a probabilistic range with a most probable value and uncertainty instead of a certain result. For this reason, the most important difference of BAYOMA lies in its capability of uncertainty quantification. Therefore, the modal parameters of a measured structure can be determined based on a probabilistic logic according to various cases (for example single measurement setup, well separated and/or closely spaced modes, multiple measurement setups). Further, the finite model of the investigated structure can also be updated by a Bayesian approach incorporated with modal identification procedure. Some efficient BAYOMA methods such as Bayesian Spectral Density Approach (BSDA) and Bayesian Fast Fourier Transform Approach (BFFTA) have been presented by various researchers during the past two decades. Despite their efficient and fast solution procedure, the available methods have some critical issues that need to be solved. Most of these problems especially lie in the quantification of posterior uncertainties and some special cases arise in closely spaced modes and/or multiple setup measurement cases. In the literature, solutions for the aforementioned problems have been also presented by various researchers. In the light of the accumulated knowledge in the literature, this study presents a computational framework for BAYOMA and Bayesian Model Updating (BMU). In addition to some improvements to the available methods, new and alternative approaches are presented for BAYOMA and BMU. According to the results, it is seen that the quality of identified modal parameters and updated finite element models increases significantly by the proposed computational procedure.
Benzer Tezler
- Bayesian model selection for latent variable causal networks by sequential monte carlo
Gizli değişkenli nedensel ağlarda parçacık süzgeci ile Bayesci model seçimi
MEHMET BURAK KURUTMAZ
Yüksek Lisans
İngilizce
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolBoğaziçi ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. DR. ALİ TAYLAN CEMGİL
- Revealing gene interactions using Bayesian networks
Gen etkileşimlerinin Bayezyen ağlar ile ortaya çıkarılması
ŞENOL İŞÇİ
Doktora
İngilizce
2013
BiyoistatistikBoğaziçi ÜniversitesiPROF. DR. CENGİZHAN ÖZTÜRK
YRD. DOÇ. DR. HASAN HÜSEYİN OTU
- Generalised Bayesian model selection using reversible jump Markov chain Monte Carlo
Tersine atlamalı Markov zinciri Monte Carlo kullanarak genelleştirilmiş Bayesçi model seçimi
OKTAY KARAKUŞ
Doktora
İngilizce
2017
Elektrik ve Elektronik Mühendisliğiİzmir Yüksek Teknoloji EnstitüsüElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DOÇ. DR. MUSTAFA AZİZ ALTINKAYA
DOÇ. DR. ERCAN ENGİN KURUOĞLU
- Ar-ge projelerinin karmaşıklığının değerlendirilmesi: Bayes inanç ağı yaklaşımı
Assessing r&d project complexity: A bayesian belief network approach
ZÜLFİYE DERİN
Yüksek Lisans
Türkçe
2024
Endüstri ve Endüstri Mühendisliğiİstanbul Teknik ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
DOÇ. DR. AYBERK SOYER
- Modal parameter identification of civil engineering structures by using an output-only system identification technique
İnşaat mühendisliği yapılarının modal parametrelerinin sadece-çıktı sistem tanılama yöntemlerinden biri kullanılarak belirlenmesi
HASAN CEYLAN
Yüksek Lisans
İngilizce
2015
İnşaat Mühendisliğiİzmir Yüksek Teknoloji Enstitüsüİnşaat Mühendisliği Ana Bilim Dalı
YRD. DOÇ. DR. GÜRSOY TURAN