Optimization of convolutional neural networks via graphic cards for centralized data
Evrişimsel sinir ağların grafik kartları ile veri merkezi en iyilemesi
- Tez No: 574696
- Danışmanlar: DR. ÖĞR. ÜYESİ İBRAHİM ZİNCİR
- Tez Türü: Yüksek Lisans
- Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: İngilizce
- Üniversite: Yaşar Üniversitesi
- Enstitü: Fen Bilimleri Enstitüsü
- Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 60
Özet
Bu tezde, MNIST veri setinde elde edilen dijitallestirilmiş el yazısı numaralar ve sonuçlarının, ayrıştırıcılığı yüksek özniteliklerinin bulunması için çoklu grafik işlem birimi (GİB) kullanan sistemler için optimize edilmiş yeni bir yaklaşım tasarımı hedeflenmiştir. Bu çalışmada evrişimsel sinir ağı (ESA) yöntemi ile dijitalleştirilmiş el yazısı sınıflandırma yöntemi üç bölümde ele alınmıştır. İlk bölümde naif evrişimsel sinir ağının grafik işlem birimine uygulanması ile sınıflandırma elde edilmiştir. İkinci aşamada grafik işlem birimleri için işlem katmanları paralelleştirilerek ve verinin paralel işlem katmanları için ayarlanıp eniyilenmiş bellek erişim şablonu yaklaşımla sınıflandırma hedeflenmiştir. Son aşamada ise yöntemin birden fazla grafik işlem birimi üzerinde çalışması için yöntemde geliştirmeler yapılmıştır. Bu aşamada amaç, kullanılan grafik işlem birimi sayısı ile ters orantılı olarak evrişimsel sinir ağının eğitim süresinde gelişim sağlamaktır.
Özet (Çeviri)
In this thesis, it is aimed to design a new approach optimized for systems that use multiple graphics processing units (GPU) in order to find highly discriminative attributes of digitized handwritten numbers obtained from MNIST dataset and their results. In this study, the convolutional neural network (CNN) method and digitized handwriting classification method are discussed in three sections. In the first part, the classification is obtained by implanting the naive convolutional neural network into the graphic processing unit. In the second stage, the process layers for graphic processing units are parallelized and the data is adjusted for parallel processing layers and the classification is aimed with optimized memory access pattern approach. In the last stage, the method has been improved to work on more than one graphic processing unit. The aim of this stage is to improve the education time of convolutional neural network inversely proportional to the number of graphic processing units used.
Benzer Tezler
- BGA malzemelerin x-ışını görüntülerindeki lehim hatalarının derin sinir ağı kullanarak tespiti
Detection of BGA solder defects from x-ray images using deep neural network
CEREN TÜRER AKDENİZ
Yüksek Lisans
Türkçe
2019
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik ÜniversitesiElektronik ve Haberleşme Mühendisliği Ana Bilim Dalı
PROF. DR. ZÜMRAY ÖLMEZ
- Türevlenebilir işleme ile kamera yeniden konumlandırma
Camera relocalization via differentiable rendering
MUHAMMED KERİM SOLMAZ
Yüksek Lisans
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİskenderun Teknik ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ MEHMET SARIGÜL
- Ensemble pruning in deep learning via semi-infinite optimization
Yarı sonsuz optimizasyon ile derin öğrenmede topluluk budama
MELİSA ÇALIŞKAN DEMİR
Yüksek Lisans
İngilizce
2022
Endüstri ve Endüstri MühendisliğiBahçeşehir ÜniversitesiEndüstri Mühendisliği Ana Bilim Dalı
PROF. DR. SÜREYYA AKYÜZ
- Cardiac arrhythmias classification based on spectrogram and convolutional neural networks
Kalp aritmilerinin evrişimsel sinir ağları ve spektrogram tabanlı yöntemle sınıflandırılması
SENA YAĞMUR ŞEN
Yüksek Lisans
İngilizce
2021
Elektrik ve Elektronik MühendisliğiYaşar ÜniversitesiElektrik-Elektronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ NALAN ÖZKURT
- VGG16 temelli mimari ile görüntülerde gürültü tahmini
Noise prediction in images with VGG16 based architecture
AYBÜKE GÜNEŞ
Yüksek Lisans
Türkçe
2022
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolTokat Gaziosmanpaşa ÜniversitesiMekatronik Mühendisliği Ana Bilim Dalı
DR. ÖĞR. ÜYESİ YASEMİN ÇETİN KAYA