Geri Dön

Derin öğrenmeye dayalı sosyal medya profillemesi

Deep learning based social media profiling

  1. Tez No: 578608
  2. Yazar: VASFİ TATAROĞLU
  3. Danışmanlar: PROF. SEZAİ TOKAT
  4. Tez Türü: Yüksek Lisans
  5. Konular: Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Pamukkale Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Bilgisayar Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 86

Özet

İnsanoğlu yüzyıllardır edindiği bilgi ve tecrübelere göre devamlı kendisini geliştirmekte ve bu tecrübelerle bazı kararlar vermektedir. İnsanın kendisine has özelliklerini, düşünce yapısını, kararlarını tahminlemek tüm dünyada siyasetçiler, siyasi partiler ve ürün pazarlaması yapan reklamcılık sektörünün önem verdiği konulardan biridir. Sosyal medyanın kullanım oranının artması ve neredeyse herkesin bir çevrim-içi sosyal ağa bağlı olması ile birlikte kişiler izledikleri faaliyetler, okudukları eserler, takip ettikleri kurumlar veya kişilerle ilgili tercihlerini, duygularını, özel bilgilerini açık bir şekilde bu ortamlarda paylaşmaya başlamıştır. Her yeni gelen nesil ile birlikte giderek sosyal hayatın parçası haline gelen bu durum, büyük veri ve sosyal medya profillemesine verilen önemin de artmasına ve bu konuyla ilgili birçok çalışmanın yapılmasına yol açmaktadır. Bu sebeple bilgisayar biliminin ürettiği güncel teknik, yöntem, araç ve gereçlerin bu alanda uygulamaları geliştirilmektedir. Derin öğrenme, makine öğrenmesinin özel bir şeklidir. Derin öğrenme ağlarının olumlu yönlerinden biri, verilerin boyutu arttıkça gelişmeye devam etmeleridir. Bu tez çalışmasında da Türkiye'deki siyasetçilerin, siyasi liderlerin ve siyasetle uğraşan yazarların, gazetecilerin Twitter sosyal medya hesapları kullanılarak oluşturulan büyük boyutlu bir ilişki matrisi yardımı ile sosyal medya profilleme yapılması ve buradan elde edilen bilgilerle kullanıcıların siyasi eğilimlerinin tahmin edilmeye çalışılması amaçlanmıştır. Siyasi görüşü bilinen örnek eğitim verisi üzerinde literatürdeki k-NN, naive Bayes, rasgele orman ve derin öğrenme gibi farklı makine öğrenmesi algoritmaları çalıştırılarak uygun parametre ve modellerin seçilmesi sağlanmış, test verileri ile de bu algoritmaların başarımları karşılaştırılmıştır. Siyasi eğilimlerin tahmini için algoritmalar karşılaştırıldığında % 87.77 doğruluk, % 87.93 kesinlik değeri ile derin öğrenme yönteminin karşılaştırılan diğer yöntemlere göre daha başarılı sonuçlar verdiği gözlemlenmiştir.

Özet (Çeviri)

Mankind constantly develops itself according to the knowledge and experience gained for centuries and makes some decisions with these experiences. All over the world, it is one of the issues that politicians, political parties and the advertising sector that make marketing of products give importance to estimating the characteristics, thinking and decisions of human being. With the increase in the usage of social media and the fact that almost everyone is connected to an online social network, people have started to share their preferences, feelings, private information about these activities, the works they read, the institutions or the people they follow in these environments. As each generation becomes increasingly a part of social life, this situation leads to an increase in the importance of social media profiling and many studies on this subject arises. For this reason, the current techniques, methods, tools and materials produced by computer science are developed in this field. In this thesis, it is aimed to make social media profiling with the help of a large-scale relationship matrix created using the social media accounts of the politicians, writers and leaders who are engaged in politics in Turkey and to try to predict the political tendencies of the users with the information obtained from it. Using the sample training data with labeled political views, training was obtained using different machine learning algorithms in the literature such as k-NN, naive Bayes, Rassal orman and deep learning and the performance of these algorithms were compared. When the algorithms were compared for the prediction of political tendencies, it was observed that %87.77 accuracy, % 87.93 precision values and deep learning method gave more successful results compared to other methods compared.

Benzer Tezler

  1. Deep learning based sentiment analysis for cloud provider selection

    Bulut sağlayıcı seçimi için derin öğrenmeye dayalı duyarlılık analizi

    MUHAMMAD RAHEEL RAZA

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat Üniversitesi

    Yazılım Mühendisliği Ana Bilim Dalı

    PROF. DR. ERKAN TANYILDIZI

  2. Sentiment analysis of Arabs in Turkey using deep learning on social media data

    Sosyal medya verileri üzerinde derin oğrenme kullanılarak Türkeyedeki Arabların duygu analizi

    İNAS CUMAOĞLU

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolKarabük Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    DOÇ. DR. YÜKSEL ÇELİK

    DR. ÖĞR. ÜYESİ VEDAT TÜMEN

  3. Yapay zekanın iş ilişkisine etkileri

    Artificial intelligence and its impact on employment relations

    YİĞİTCAN ÇANKAYA

    Doktora

    Türkçe

    Türkçe

    2024

    HukukAtılım Üniversitesi

    Özel Hukuk Ana Bilim Dalı

    PROF. DR. SÜLEYMAN BAŞTERZİ

  4. Improving sentiment analysis based deep learning by using feature selection

    Özellik seçimini kullanarak duygu analizine dayalı derin öğrenmeyi iyileştirme

    MOHAMMED HUSSEİN ABDALA

    Yüksek Lisans

    İngilizce

    İngilizce

    2021

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat Üniversitesi

    Yazılım Mühendisliği Ana Bilim Dalı

    DOÇ. DR. FATİH ÖZYURT

  5. Spam detection by using word-vector learning algorithm in online social networks

    Çevrimiçi sosyal ağlarda kelime-vektör öğrenme algoritması kullanarak spam belirleme

    ASO KHALEEL AMEEN SALIHI

    Yüksek Lisans

    İngilizce

    İngilizce

    2019

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolFırat Üniversitesi

    Yazılım Mühendisliği Ana Bilim Dalı

    DR. ÖĞR. ÜYESİ BUKET KAYA