Predicting economic growth using machine learning techniques and sentiment analysis
Makine öğrenmesi teknikleri ve duygu analizi ile ekonomik büyümenin tahmin edilmesi
- Tez No: 583345
- Danışmanlar: DR. ÖĞR. ÜYESİ İNAN UTKU TÜRKMEN
- Tez Türü: Yüksek Lisans
- Konular: Ekonomi, Economics
- Anahtar Kelimeler: Belirtilmemiş.
- Yıl: 2019
- Dil: İngilizce
- Üniversite: TED Üniversitesi
- Enstitü: Lisansüstü Programlar Enstitüsü
- Ana Bilim Dalı: Belirtilmemiş.
- Bilim Dalı: Belirtilmemiş.
- Sayfa Sayısı: 58
Özet
Bu çalışmanın amacı finansal ve ekonomik haberlerden duygu endeksi oluşturmak ve Türkiye'de ekonomik aktiviteyi etkileyen temel ekonomik ve politik olaylarla potansiyel ilişkisini incelemektir. Türkçe'de duygu analizi için etkin bir ekonomik ve finansal sözlük olmadığı için, 2011-2019 dönemi için makine-öğrenme algoritmalarını kullanarak bir duygu endeksi geliştirdik. Bu çalışmada kullanılan veri seti, 2011'den günümüze basında yayınlanan ve dikkatlice belirlenmiş bir kelime grubuna göre seçilen 131.601 haberi içermektedir. Duygu polaritesi belirlenmiş haber veri setini oluşturabilmek amacıyla uzman bir grup sayesinde haberler sınıflandırılmıştır. Duygu endeksinin Türkiye ekonomisi için önemli olayları kapsadığı görülmektedir. Resmi istatistiklerdeki gecikme dikkate alındığında, söz konusu endeks öncü ekonomik gösterge olarak kullanılabilir. Sonraki çalışma konusu olarak, duygu endeksinin ekonomik aktiviteyi açıklayan ekonometrik modellerin açıklayıcı gücünü arttırıp arttırmadığının araştırılması planlanmaktadır.
Özet (Çeviri)
The purpose of this paper is to construct sentiment index from financial and economic news and examine its potential relation with main economic and political events that affect economic activity in Turkey. Since there is no effective economic and financial lexicon (as in English) for sentiment analysis in Turkish language, we developed a sentiment index by using machine-learning algorithms for the period 2011-2019. Data set used in this study includes 131.601 news in Turkish, which were selected according to a carefully specified set of words, published in printed media. We classified the semantic orientation of news by a group of experts to construct annotated data set. It is observed that sentiment index covers the important events for Turkish economy. Considering time lag in official statistics, the sentiment index can be used as a leading economic indicator. It is planned to investigate whether the sentiment index increases the explanatory power of the econometrics models explaining economic activity in Turkey as a future work.
Benzer Tezler
- Doğru yatırım kararları için yapay zekâ tekniklerini kullanarak borsa tahmininin kapsamlı analizi
Comprehensive analysis of stock market prediction using artificial intelligence techniques for accurate investment decisions
FARES ABDULHAFIDH DERHEM DAEL
Doktora
Türkçe
2022
Bilgi ve Belge YönetimiAtatürk ÜniversitesiYönetim Bilimleri Ana Bilim Dalı
PROF. DR. UĞUR YAVUZ
- Machine learning-based energy consumption forecastingfor stores in a shopping center - A case study
Alışveriş merkezindeki dükkânların enerji tüketimininmakine öğrenmesiyle tahmini - Vaka çalışması
NADIA AHBAB
Yüksek Lisans
İngilizce
2023
Enerjiİstanbul Teknik ÜniversitesiEnerji Bilim ve Teknoloji Ana Bilim Dalı
ÖĞR. GÖR. MUSTAFA BERKER YURTSEVEN
- İleri veri işlem yöntemleri ile su kaynaklarının kullanımı ve planlanmasının optimizasyonu
Optimisation of water resources use and planning with advanced data processing methods
UĞUR AKBULUT
Doktora
Türkçe
2023
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Aydın ÜniversitesiBilgisayar Mühendisliği Ana Bilim Dalı
PROF. ZAFER ASLAN
- District-based urban sprawl monitoring and modelling using CA-Markov model: application in two mega cities
İlçe bazlı kentsel yayılma izleme ve CA-Markov model ile modelleme: iki mega şehirde uygulama
ANALI AZABDAFTARI
Doktora
İngilizce
2022
İletişim Bilimleriİstanbul Teknik Üniversitesiİletişim Sistemleri Ana Bilim Dalı
PROF. DR. AYŞE FİLİZ SUNAR
- Türkiye elektrik tüketiminin makine öğrenmesi yöntemleri ile tahmini
Prediction of electricity consumption in turkiye with machine learning methods
DENİZ HERSEK
Yüksek Lisans
Türkçe
2024
İstatistikYıldız Teknik Üniversitesiİstatistik Ana Bilim Dalı
PROF. DR. GÜLHAYAT GÖLBAŞI ŞİMŞEK