Geri Dön

Medikal görüntülerde geleneksel yöntemlerin ve evrişimsel sinir ağlarının içerik tabanlı olarak karşılaştırılması

Content-based comparison of traditional methods and convolutional neural networks in medical images

  1. Tez No: 595021
  2. Yazar: YUSUF ÖZTÜRK
  3. Danışmanlar: DR. ÖĞR. ÜYESİ GÖKÇEN ÇETİNEL
  4. Tez Türü: Yüksek Lisans
  5. Konular: Elektrik ve Elektronik Mühendisliği, Mühendislik Bilimleri, Electrical and Electronics Engineering, Engineering Sciences
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2019
  8. Dil: Türkçe
  9. Üniversite: Sakarya Üniversitesi
  10. Enstitü: Fen Bilimleri Enstitüsü
  11. Ana Bilim Dalı: Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  12. Bilim Dalı: Elektronik Bilim Dalı
  13. Sayfa Sayısı: 79

Özet

Son yıllarda bilgisayar teknolojilerinin gelişimi ve internet kullanımının hızla artmasıyla birlikte görüntü erişim sistemleri önem kazanmıştır. Bu tezde görüntü erişim hızını arttırmayı ve depolama alanı gereksinimini azaltmayı amaçlayan içerik tabanlı görüntü erişim sistemleri ele alınmıştır. İçerik tabanlı görüntü erişimi (Content based Image Retrieval, CBIR) sağlık da dahil olmak üzere birçok alanda yaygın olarak kullanılmaktadır. Günümüzde birçok hastalığın teşhisinde medikal görüntüleme sistemleri yaygın olarak kullanılmaktadır. Ultrason, tomografi, röntgen, manyetik rozenans görüntüleme gibi farklı modeliteler uzmanlar tarafından yaygın olarak tercih edilmektedir. Bu modeliteler farklı çalışma prensiplerine sahip olsalar da farklı açılardan hastanın belirlenen bölgelerine ait görüntüler elde etme esasına dayalıdırlar. Bunun sonucu olarak medikal görüntü sayısı her geçen gün artmaktadır. Medikal görüntülere ihtiyaç duyulduğunda hızlı ve doğru bir şekilde erişebilmek için CBIR sistemleri kullanılabilir. Sunulan tezde medikal görüntüler için iki farklı yöntem ile CBIR sistemi tasarlanması amaçlanmıştır. Birinci tasarımda medikal görüntüler için renk, doku ve şekil içeriklerini temsil eden öznitelikler çıkarılmıştır. Görüntüler arasındaki benzerliği ölçmek amacıyla basit metrikler vasıtasıyla öznitelikler karşılaştırılmıştır. İkinci tasarımda ise öznitelik çıkarma yerine derin öğrenme tekniklerine dayalı bir yol izlenmiştir. Her iki tasarım ile elde edilen sonuçlar tezde sunularak yorumlanmıştır. Önerilen sistem sayesinde sağlık birimlerinde çalışan personel ve doktorların hastalık teşhisinden önce benzer vakaları medikal görüntüler üzerinden hızlı bir şekilde incelemeleri kolaylaştırılmış olacaktır.

Özet (Çeviri)

In recent years, with the development of computer technologies and the rapid increase in internet usage, image retrieval systems have gained importance. In this thesis, content based image retrieval systems which aim to increase the speed of image access and decrease the storage space requirement are examined. Content-based image retrieval systems (CBIR) are widely used in many areas, including health. Today, medical imaging systems are widely used in the diagnosis of many diseases. Different models such as ultrasound, tomography, x-ray, magnetic resonance imaging are widely preferred by experts. Although these models have different working principles, they are based on the acquisition of images of identified areas of the patient from different angles. As a result, the number of medical images increases day by day. CBIR systems can be used to access medical images quickly and accurately when needed. In this thesis, it is aimed to design CBIR system with two different methods for medical images. In the first design, color, texture and shape features of medical images were extracted. Features were compared using simple metrics to measure similarity between images. In the second design, instead of feature extraction, deep learning techniques was followed. The results of both designs were presented and reviewed in the thesis. It will be easier for staff and doctors working in health units to quickly examine similar cases before medical diagnosis with the proposed system.

Benzer Tezler

  1. Prediction of COVID 19 disease using chest X-ray images based on deep learning

    Derin öğrenmeye dayalı göğüs röntgen görüntüleri kullanarak COVID 19 hastalığının tahmini

    ISMAEL ABDULLAH MOHAMMED AL-RAWE

    Yüksek Lisans

    İngilizce

    İngilizce

    2024

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ADEM TEKEREK

  2. Pansharpening using generative adversarial networks with dual discriminators

    Çift ayrıştırıcılı çekişmeli üretken ağlar kullanarak pankeskinleştirme

    NAHİDE NESLİ CESUR

    Yüksek Lisans

    İngilizce

    İngilizce

    2023

    Elektrik ve Elektronik Mühendisliğiİstanbul Teknik Üniversitesi

    Elektronik ve Haberleşme Mühendisliği Ana Bilim Dalı

    PROF. DR. IŞIN ERER

  3. Classification of lung CT images using deep convolutional neural network

    Akciğer tomografi görüntülerinin derin evrişimsel sinir ağları ile sınıflandırılması

    HOMAY DANAEI MEHR

    Yüksek Lisans

    İngilizce

    İngilizce

    2017

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve KontrolGazi Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    YRD. DOÇ. DR. HÜSEYİN POLAT

  4. Derin öğrenme yöntemlerinin tıbbi teşhis alanında sorgulanması ve beyin tümörü tanısında uygulanması

    Investigation of deep learning in medical image analysis and detection of brain tumor using novel adaptive momentum method

    UTKU CAN AYTAÇ

    Doktora

    Türkçe

    Türkçe

    2022

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Aydın Üniversitesi

    Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. ALİ GÜNEŞ

  5. Evrişimsel sinir ağları ve çekirge optimizasyon algoritması kullanarak kolon kanser hastalığı tesbiti

    Colon cancer disease diagnose with convolutional neural network and grasshopper optimization algorithm

    AMNA ALI A MOHAMED

    Doktora

    Türkçe

    Türkçe

    2024

    Mühendislik BilimleriKastamonu Üniversitesi

    Malzeme Bilimi ve Mühendisliği Ana Bilim Dalı

    PROF. DR. AYBABA HANÇERLİOĞULLARI