Geri Dön

Automated detection of new multiple sclerosis lesions in longitudinal magnetic resonance imaging

Başlık çevirisi mevcut değil.

  1. Tez No: 602595
  2. Yazar: ONUR GANİLER
  3. Danışmanlar: DR. XAVIER LLADO
  4. Tez Türü: Doktora
  5. Konular: Nöroloji, Radyoloji ve Nükleer Tıp, Neurology, Radiology and Nuclear Medicine
  6. Anahtar Kelimeler: Belirtilmemiş.
  7. Yıl: 2014
  8. Dil: İngilizce
  9. Üniversite: Universitat de Girona
  10. Enstitü: Yurtdışı Enstitü
  11. Ana Bilim Dalı: Belirtilmemiş.
  12. Bilim Dalı: Belirtilmemiş.
  13. Sayfa Sayısı: 190

Özet

Özet yok.

Özet (Çeviri)

This thesis deals with the detection of new multiple sclerosis (MS) lesions in longitudinal brain magnetic resonance (MR) imaging. This disease is characterized by the presence of lesions in the brain, predominantly in the white matter (WM) tissue of the brain. The detection and quantification of new lesions are crucial to follow-up MS patients. Moreover, the manual detection of these new lesions is not only time-consuming, but is also prone to intra- and inter-observer variability. Therefore, the development of automated techniques for the detection MS lesions is a major challenge. After a thorough analysis of the state-of-the art in MS lesion detection approaches, we present a new classification of techniques pointing out their main strengths and weaknesses. A complementary quantitative evaluation of some of the most remarkable methods in the literature is also provided. Subsequently, we present a new proposal based on a change detection approach, which combines various characteristics of different MR image modalities. Firstly, several preprocessing methods are included in the pipeline to improve the quality of MR images. We analyze these processes as well as several rigid and non-rigid image registration methods in detail. The subtraction of the baseline and follow-up images is used to determine changes between the images. Moreover, we apply a WM masking step in order to reduce the search space for lesions only within WM. Afterwards, we apply a threshold to the subtraction images. Although determining the threshold can be done by experts, we propose an automated thresholding process which provides a satisfactory trade-off between sensitivity and specificity. Finally, we refine the candidate lesions detected using lesion features, particularly in order to reduce false positive lesions. For this purpose, including the baseline and follow-up images, we join both results obtained from PD-w and T2-w images in a supervised and an unsupervised manner. Experimental results are evaluated on a database of 20 MS patients with a variable lesion load, where manual segmentation provided by experts was available. The evaluation, carried out in a quantitative and qualitative manner, includes a comparison and uses several metrics for detection and segmentation.

Benzer Tezler

  1. Deep learning approaches for multiple sclerosis lesion segmentation using multi-sequence 3D MR images

    Çok sekanslı 3B MR görüntüleri kullanılarak multiple skleroz lezyon bölütlemesi için derin öğrenme yaklaşımları

    BEYTULLAH SARICA

    Doktora

    İngilizce

    İngilizce

    2023

    Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolİstanbul Teknik Üniversitesi

    Bilişim Uygulamaları Ana Bilim Dalı

    PROF. DR. DURSUN ZAFER ŞEKER

  2. Multiple sclerosis (MS) hastalığının erken teşhisi için manyetik rezonans (MR) görüntülerinin otomatik segmentasyonu

    Automatic segmentaion of multiple sclerosis disiese (MS) from magnetic rezonans images (MRI) for early detection

    CAN KİRAZ

    Yüksek Lisans

    Türkçe

    Türkçe

    2015

    Jeodezi ve FotogrametriYıldız Teknik Üniversitesi

    Harita Mühendisliği Ana Bilim Dalı

    PROF. DR. BÜLENT BAYRAM

  3. Automated detection of discontinuity properties using terrestrial laser scanning data

    Karasal lazer tarama verileri kullanarak süreksizlik özelliklerinin otomatik belirlenmesi

    DENİZ ÜNLÜSOY

    Doktora

    İngilizce

    İngilizce

    2020

    Jeoloji MühendisliğiOrta Doğu Teknik Üniversitesi

    Jeoloji Mühendisliği Ana Bilim Dalı

    PROF. DR. MEHMET LÜTFİ SÜZEN

  4. Çoğul dirençli acinetobacter baumannii kan izolatlarına karşı sulbaktam ve kolistin/sulbaktam etkinliklerinin belirlenmesi

    Detection of sulbactam and colistin/sulbactam activities against multiple drug resistant acinetobacter baumannii strains isolated from blood cultures

    MEHDI MESKINI HEYDARLOU

    Doktora

    Türkçe

    Türkçe

    2020

    MikrobiyolojiEskişehir Osmangazi Üniversitesi

    Tıbbi Mikrobiyoloji Ana Bilim Dalı

    PROF. DR. GÜL DURMAZ

  5. Security enhancement of image steganography using deepconvolutional neural network (DCNN)

    Görüntü güvenliği geliştirme derin kullanarak steganografidönüşümlü sinir ağı (DCNN)

    RAFAD IMAD KADHIM ABO KHUSHOOT

    Yüksek Lisans

    İngilizce

    İngilizce

    2022

    Elektrik ve Elektronik MühendisliğiAltınbaş Üniversitesi

    Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı

    PROF. DR. GALİP CANSEVER